Metro Studio 2.0.1.5

简介:

下载:http://www.syncfusion.com/downloads/metrostudio

 

以前的版本:

image

 

更新

image

 

image

 

image

 

image

 

image



本文转自 sun8134 博客园博客,原文链接:  http://www.cnblogs.com/sun8134/archive/2013/05/24/3096165.html ,如需转载请自行联系原作者

相关文章
|
C++
C++ 语言异常处理实战:在编程潮流中坚守稳定,开启代码可靠之旅
【8月更文挑战第22天】C++的异常处理机制是确保程序稳定的关键特性。它允许程序在遇到错误时优雅地响应而非直接崩溃。通过`throw`抛出异常,并用`catch`捕获处理,可使程序控制流跳转至错误处理代码。例如,在进行除法运算或文件读取时,若发生除数为零或文件无法打开等错误,则可通过抛出异常并在调用处捕获来妥善处理这些情况。恰当使用异常处理能显著提升程序的健壮性和维护性。
208 2
|
SQL 分布式计算 监控
Hive性能优化之计算Job执行优化 2
Hive性能优化之计算Job执行优化
360 1
芋道源码 el-image 层级问题解决
找到组件el-image 然后添加 preview-teleported 属性就解决了
|
SQL Oracle 关系型数据库
Oracle 备份恢复再也不用头疼了
Oracle 备份恢复再也不用头疼了
316 0
|
应用服务中间件 Linux 网络安全
windows+linux环境下nginx部署环境
windows+linux环境下nginx部署环境
265 1
|
12月前
|
存储 人工智能 算法
卷起来!让智能体评估智能体,Meta发布Agent-as-a-Judge
Meta(原Facebook)提出了一种名为Agent-as-a-Judge的框架,用于评估智能体的性能。该框架包含八个模块,通过构建项目结构图、定位相关文件、读取多格式数据、搜索和检索信息、询问要求满足情况、存储历史判断、以及规划下一步行动,有效提升了评估的准确性和稳定性。实验结果显示,Agent-as-a-Judge在处理复杂任务依赖关系方面优于大型语言模型,但在资源消耗和潜在偏见方面仍面临挑战。
418 1
|
存储 人工智能 自然语言处理
LangChain: 大语言模型的新篇章
本文介绍了LangChain框架,它能够将大型语言模型与其他计算或知识来源相结合,从而实现功能更加强大的应用。接着,对LangChain的关键概念进行了详细说明,并基于该框架进行了一些案例尝试,旨在帮助读者更轻松地理解LangChain的工作原理。
|
知识图谱
KDD 2024:Emory提出最新PolygonGNN框架:可捕捉通用多边形内外的空间关系
【9月更文挑战第16天】近年来,多边形表示学习在形状编码、建筑模式分类和地理问答等应用中至关重要。然而,现有研究多聚焦于单个多边形,忽视了多边形间复杂关系。为解决此问题,Emory大学团队提出了PolygonGNN框架,通过异质可见性图整合内外关系,并引入异质生成树采样提升计算效率。该框架设计了旋转平移不变的几何表示,适用于多种场景。实验结果显示,PolygonGNN在多个任务上表现优异,但在处理大规模场景时仍面临计算复杂度挑战,并未充分考虑拓扑结构和语义信息的影响。
179 2
|
机器学习/深度学习 自然语言处理
【绝技揭秘】模型微调与RAG神技合璧——看深度学习高手如何玩转数据,缔造预测传奇!
【10月更文挑战第5天】随着深度学习的发展,预训练模型因泛化能力和高效训练而备受关注。直接应用预训练模型常难达最佳效果,需进行微调以适应特定任务。本文介绍模型微调方法,并通过Hugging Face的Transformers库演示BERT微调过程。同时,文章探讨了检索增强生成(RAG)技术,该技术结合检索和生成模型,在开放域问答中表现出色。通过实际案例展示了RAG的工作原理及优势,提供了微调和RAG应用的深入理解。
344 0