机器人太危险?马斯克斥资千万研究人工智能

简介:

机器人会不会杀人?

机器人太危险?马斯克斥资千万研究人工智能

在各类智能机器人纷纷问世后,业界开始发起了人工智能(AI)危机论,在这之中就不乏一些科技名流,例如,霍金、特斯拉创始人马斯克都认为人工智能将威胁人类生存。

今年1月,钢铁侠马斯克向未来生命研究所(Future of Life Institute)注资1000万美元,用于评估与人工智能相关的风险。近日,该研究所正式拿出700万美元投入研究,支持针对人工智能负面效应展开的研究,共有37支科研团队获得该项科研基金,研究的项目将包括多个方面:

其中三个项目主要研发针对AI系统的开发技术,通过观察人类的日常行为来学习人类的喜好,包括在伯克利大学和牛津大学的科研项目。

来自机器智能研究所(Machine Intelligence Research Institute)的Benja Fallenstein所带领的科研项目主要确保超级系统的价值观和人类相同。

来自卡耐基梅隆大学 Manuela Veloso带领的项目主要让AI系统向人类解释他们的决定。

由斯坦福大学的Michael Webb研究主要研究如何确保人工智能对经济的影响。

由Heather Roff带领的项目主要研究如何确保AI控制的武器在“人类控制范围”。

牛津-剑桥科研中心主要研究AI相关的政策。

马斯克一直是人工智能危机论的支持者,他曾表示,人工智能的“危险程度可能超过核弹”。随后在去年10月他又指出,人工智能可能需要“被监管”,在他看来通过一系列研究室可以阻止危机发生的。

不管这是不是危言耸听,马斯克愿意出巨资投身人工智能的研究确实值得钦佩!


原文发布时间: 2015-07-04 12:08
本文作者: maker
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
11天前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
50 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
PeterCat 是一款开源的智能答疑机器人,能够自动抓取 GitHub 上的文档和 issue 构建知识库,提供对话式答疑服务,帮助开发者和社区维护者高效解决技术问题。
95 7
PeterCat:一键创建开源项目 AI 问答机器人,自动抓取 GitHub 仓库信息、文档和 issue 等构建知识库
|
2月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
246 64
|
29天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
196 32
|
29天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
80 13
|
2月前
|
机器学习/深度学习 人工智能 人机交互
图形学领域的研究热点会给人工智能带来哪些挑战和机遇?
图形学中的一些研究热点,如 3D 模型生成与重建,需要大量的 3D 数据来训练模型,但 3D 数据的获取往往比 2D 图像数据更困难、成本更高。而且,3D 数据的多样性和复杂性也使得数据的标注和预处理工作更加繁琐,这对人工智能的数据处理能力提出了更高要求。例如,在训练一个能够生成高精度 3D 人体模型的人工智能模型时,需要大量不同姿态、不同体型的 3D 人体扫描数据,而这些数据的采集和整理是一项艰巨的任务.
120 50
|
2月前
|
人工智能 机器人 Shell
AI语音机器人安装方法 AI机器人安装代码
AI语音机器人安装方法 AI机器人安装代码
47 2
|
2月前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
人工智能在图形学领域的研究热点有哪些?
AIGC:通过生成对抗网络(GAN)、变分自编码器(VAE)及其变体等技术,能够根据用户输入的文字描述、草图等生成高质量、高分辨率的图像,在艺术创作、游戏开发、广告设计等领域应用广泛。如OpenAI的DALL-E、Stable Diffusion等模型,可生成风格各异、内容丰富的图像,为创作者提供灵感和素材.
|
3月前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
310 2