linux 网络编程之TIME_WAIT状态

简介:

                                                          Linux 网络编程之TIME_WAIT状态

 

 

                                                       

 

刚刚开始看TCP socket的4次握手终止流程图的时候,对于最后的TIME_WAIT状态不是很理解.现在在回过头来研究,发现TIME_WAIT状态是一个很微妙状态.之所以设计TIME_WAIT状态的原因有2个原因:

 

  1. 使得TCP的全双工连接能够可靠的终止.
  2.  使得连接终止后网络上任然残余的发送给该连接的数据被丢弃而不至于被新连接接收.

在具体详解这两个原因之前,我们需要理解MSL(maxinum segment lifetime)这个概念.

每一个TCP 都必须有一个MSL值.这个值一般是2分钟,但也不是固定的,不同的系统不一样.无论是否出错或者连接被断开,总之,一个数据包在网路上能停留的最大时间是MSL.也就是说MSL是数据包的生命周期时间.操作这个时间,该数据包将会被丢弃而不被发送.而TIME_WAIT状态持续的时间是MSL的两倍,也就是2MSL时间.

 

  • TCP的全双工连接能够被可靠终止

TCP的可靠终止需要经过4次握手终止.如上图所示:首先,client 主动close,导致FIN发送给server,server接收到FIN后,给client回复一个ACK,之后,server会关闭和client的连接,即向client发送一个FIN,client接收到FIN之后,会发送一个ACK给server.此时client就进入TIME_WAIT状态.如果server没有收到ACK,server会重新发送一个FIN信息给client,client会重发ACK,server然后继续等待client发送一个ACK.这样保证了双方的可靠终止.2端都知道对方已经终止了.那么,在这个TIME_WAIT时间中,可以重发ACK,如果client没有收到FIN信息,则TCP会向server发送一个RST信息,这个信息会被server解释成error.

 

  • 连接终止后网络上任然残留的发送到该连接的数据被丢弃而不至于被新连接接收.

举个例子:

在10.12.24.48 port:21和206.8.16.32 port:23(不必关心哪一端是server哪一端是client)之间建立了一个TCP连接A.然后此链接A被close掉了.然后此时又在10.12.24.48 port:21和206.8.16.32 port:23(不必关心哪一端是server哪一端是client)之间建立了一个新的TCP连接B.很可能A和B连接是有不同的应用程序建立的.那么,当我们close掉A之后,网络上很有可能还有属于A连接两端的数据m正在网路上被传送.而此时A被close掉了,重新建立了B连接,由于A和B连接的地址和端口都是一样的.这样,m数据就会被最终发送到B连接的两端.这样就造成了混乱,B接收到了原本数据A的数据.处于TIME_WAIT状态的连接会禁止新的同样的连接(如A,B)连接被建立.除非等到TIME_WAIT状态结束,也就是2MSL时间之后.其中,一个MSL时间是为了网络上的正在被发送到该链接的数据被丢弃,另一个MSL使得应答信息被丢弃.这样,2MSL之后,保证重新建立的所得到的数据绝对不会是发往就连接的数据.

 

 


版权申明:
转载文章请注明原文出处http://blog.csdn.net/feiyinzilgd/archive/2010/09/19/5894446.aspx

并请联系谭海燕本人或者前往谭海燕个人主页留言

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
2月前
|
安全 Linux 网络安全
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
97 0
Nipper 3.9.0 for Windows & Linux - 网络设备漏洞评估
|
3月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
231 18
|
3月前
|
网络协议 关系型数据库 Linux
【App Service Linux】在Linux App Service中安装 tcpdump 并抓取网络包
在App Service for Linux环境中,无法像Windows一样直接使用网络排查工具抓包。本文介绍了如何通过TCPDUMP在Linux环境下抓取网络包,包括SSH进入容器、安装tcpdump、执行抓包命令及下载分析文件的完整操作步骤。
200 5
|
4月前
|
Web App开发 网络协议 Linux
【Linux】网络基础
TCP/IP五层模型是网络通信的基础框架,将复杂的数据传输过程分为物理层、数据链路层、网络层、传输层和应用层,每层各司其职,协同完成远程通信。该模型确保了不同设备和网络之间的互联互通,是现代互联网运行的核心机制。
295 5
|
4月前
|
网络协议 Linux 开发者
深入Linux中UDP网络通信机制编程探索
以上步骤概述了Linux中UDP网络通信的编程机制。在实现时,因关注细节和上下文环境可能有所调整,但大致流程是一致的。这些知识片段旨在帮助开发者快速上手Linux下的UDP编程,并提供可靠的信息作为编程的基础。在编程实践中,应结合实际业务需求,设计合适的数据传输协议,确保数据的正确性和实时性。
127 0
|
6月前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
193 18
|
6月前
|
Linux 数据安全/隐私保护
使用Linux命令行接入无线网络Wi-Fi的示例。
现在,你已经使用命令行成功地连接到 Wi-Fi 网络了。这两个示例涵盖了用 `nmcli` 和 `wpa_supplicant` 连接无线网络的常见场景,让你能够不依赖图形化界面来完成这个任务。在日常使用中熟练掌握这些基本操作能增强你对 Linux 系统的理解,帮助你更有效地处理各种问题。
451 12
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
434 2
|
6月前
|
安全 Ubuntu Linux
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
217 0
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
|
8月前
|
Ubuntu Linux
Linux系统管理:服务器时间与网络时间同步技巧。
以上就是在Linux服务器上设置时间同步的方式。然而,要正确运用这些知识,需要理解其背后的工作原理:服务器根据网络中的其他机器的时间进行校对,逐步地精确自己的系统时间,就像一只犹豫不决的啮齿动物,通过观察其他啮齿动物的行为,逐渐确定自己的行为逻辑,既简单,又有趣。最后希望这个过程既能给你带来乐趣,也能提高你作为系统管理员的专业素养。
1280 20