uC/OS-II源码分析(六)

简介:

μC/OS-Ⅱ总是运行进入就绪态任务中优先级最高的那一个。确定哪个任务优先级最高,

下面该哪个任务运行了的工作是由调度器(Scheduler)完成的。任务级的调度是由函数

OSSched()完成的。中断级的调度是由另一个函数OSIntExt() 完成的,这个函数将在以后描

述。OSSched() 的代码如下:

void OS_Sched (void)

{

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr;

#endif

INT8U y;

OS_ENTER_CRITICAL();

if ((OSIntNesting == 0) && (OSLockNesting == 0))

{ /* 只有ISR完成同时没有锁住调度才进行切换 */

//找最高优先级的任务

y = OSUnMapTbl[OSRdyGrp];

OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);

if (OSPrioHighRdy != OSPrioCur)

{ /*检查寻找到的优先级最高的任务是否是当前正在运行的任务,若是则不进行调度*/

OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];//指向优先级最高的任务控制块

OSCtxSwCtr++; /* 切换计数器加*/

OS_TASK_SW(); /* 进行实际的任务切换*/

}

}

OS_EXIT_CRITICAL();

}

#define uCOS 0x80 /*用于任务切换的中断向量*/

#define OS_TASK_SW() asm INT uCOS

μC/OS-Ⅱ任务调度所花的时间是常数,与应用程序中建立的任务数无关。任务切换很简单,由以下两步完成,将被挂起任务的微处理器寄存器推入堆栈,然后将较高优先级的任务的寄存器值从栈中恢复到寄存器中。在μC/OS-Ⅱ中,就绪任务的栈结构总是看起来跟刚刚发生过中断一样,所有微处理器的寄存器都保存在栈中。换句话说,μC/OS-Ⅱ运行就绪态的任务所要做的一切,只是恢复所有的CPU 寄存器并运行中断返回指令。为了做任务切换,运行OS_TASK_SW(), 人为模仿了一次中断。多数微处理器有软中断指令或者陷阱指令TRAP 来实现上述操作。中断服务子程序或陷阱处理(Trap hardler),也称作事故处理(exception handler),必须提供中断向量给汇编语言函数OSCtxSw() 。OSCtxSw() 除了需要OS_TCBHighRdy 指向即将被挂起的任务,还需要让当前任务控制块OSTCBCur 指向即将被挂起的任务,

OSSched()的所有代码都属临界段代码。在寻找进入就绪态的优先级最高的任务过程中,

为防止中断服务子程序把一个或几个任务的就绪位置位,中断是被关掉的。为缩短切换时间,

OSSched()全部代码都可以用汇编语言写。为增加可读性,可移植性和将汇编语言代码最少

化,OSSched() 是用C 写的。

OSCtxSw代码:

_OSCtxSw PROC FAR

PUSHA ; 保存当前任务的上下文

PUSH ES ;

PUSH DS ;

MOV AX, SEG _OSTCBCur ; Reload DS in case it was altered

MOV DS, AX ;

LES BX, DWORD PTR DS:_OSTCBCur ; OSTCBCur->OSTCBStkPtr = SS:SP

MOV ES:[BX+2], SS ;

MOV ES:[BX+0], SP ;

CALL FAR PTR _OSTaskSwHook ; Call user defined task switch hook

MOV AX, WORD PTR DS:_OSTCBHighRdy+2 ; OSTCBCur = OSTCBHighRdy

MOV DX, WORD PTR DS:_OSTCBHighRdy ;

MOV WORD PTR DS:_OSTCBCur+2, AX ;

MOV WORD PTR DS:_OSTCBCur, DX ;

MOV AL, BYTE PTR DS:_OSPrioHighRdy ; OSPrioCur = OSPrioHighRdy

MOV BYTE PTR DS:_OSPrioCur, AL ;

LES BX, DWORD PTR DS:_OSTCBHighRdy ; SS:SP = OSTCBHighRdy->OSTCBStkPtr

MOV SS, ES:[BX+2] ;

MOV SP, ES:[BX] ;

POP DS ; 加载新任务的上下文

POP ES ;

POPA ;

IRET ; 返回到新任务中

_OSCtxSw ENDP

3. 给调度器上锁和开锁(Locking and UnLocking the Scheduler)

给调度器上锁函数OSSchedlock()用于禁止任务调度,直到任务完成后调用给调度器开锁函数OSSchedUnlock() 为止。调用OSSchedlock() 的任务保持对CPU 的控制权,尽管有个优先级更高的任务进入了就绪态。然而,此时中断是可以被识别的,中断服务也能得到(假设中断是开着的)。OSSchedlock() 和OSSchedUnlock() 必须成对使用。变量OSLockNesting 跟踪OSSchedLock() 函数被调用的次数,以允许嵌套的函数包含临界段代码,这段代码其它任务不得干预。μC/OS-Ⅱ允许嵌套深度达255 层。当OSLockNesting 等于零时,调度重新得到允许。函数OSSchedLock() 和OSSchedUnlock() 的使用要非常谨慎,因为它们影响μC/OS-Ⅱ对任务的正常管理。

当OSLockNesting 减到零的时候, OSSchedUnlock() 调用OSSched[L3.10(2)] 。

OSSchedUnlock() 是被某任务调用的,在调度器上锁的期间,可能有什么事件发生了并使一

个更高优先级的任务进入就绪态。

调用OSSchedLock() 以后,用户的应用程序不得使用任何能将现行任务挂起的系统调

用。也就是说,用户程序不得调用OSMboxPend() 、OSQPend() 、OSSemPend() 、

OSTaskSuspend(OS_PR1O_SELF) 、OSTimeDly() 或OSTimeDlyHMSM(), 直到OSLockNesting 回零为止。因为调度器上了锁,用户就锁住了系统,任何其它任务都不能运行。

当低优先级的任务要发消息给多任务的邮箱、消息队列、信号量时,用户不希望高优先级的任务在邮箱、队列和信号量没有得到消息之前就取得了CPU 的控制权,此时,用户可以使用禁止调度器函数。

给调度器上锁

void OSSchedLock (void)

{

if (OSRunning == TRUE)

{

OS_ENTER_CRITICAL();

OSLockNesting++;

OS_EXIT_CRITICAL();

}

}

给调度器开锁.

void OSSchedUnlock (void)

{

if (OSRunning == TRUE) {

OS_ENTER_CRITICAL();

if (OSLockNesting > 0) {

OSLockNesting--;

if ((OSLockNesting | OSIntNesting) == 0) {

OS_EXIT_CRITICAL();

OSSched();

} else {

OS_EXIT_CRITICAL();

}

} else {

OS_EXIT_CRITICAL();

}

}

}

目录
相关文章
|
Web App开发 调度
|
Web App开发 消息中间件 存储
|
Web App开发 调度 消息中间件
|
Web App开发 调度 消息中间件
|
消息中间件 Web App开发 存储
|
2月前
|
安全 Linux 数据安全/隐私保护
Vanilla OS:下一代安全 Linux 发行版
【10月更文挑战第30天】
66 0
Vanilla OS:下一代安全 Linux 发行版
|
2月前
|
NoSQL Linux PHP
如何在不同操作系统上安装 Redis 服务器,包括 Linux 和 Windows 的具体步骤
本文介绍了如何在不同操作系统上安装 Redis 服务器,包括 Linux 和 Windows 的具体步骤。接着,对比了两种常用的 PHP Redis 客户端扩展:PhpRedis 和 Predis,详细说明了它们的安装方法及优缺点。最后,提供了使用 PhpRedis 和 Predis 在 PHP 中连接 Redis 服务器及进行字符串、列表、集合和哈希等数据类型的基本操作示例。
73 4
|
2月前
|
人工智能 安全 Linux
|
3月前
|
Unix 物联网 大数据
操作系统的演化与比较:从Unix到Linux
本文将探讨操作系统的历史发展,重点关注Unix和Linux两个主要的操作系统分支。通过分析它们的起源、设计哲学、技术特点以及在现代计算中的影响,我们可以更好地理解操作系统在计算机科学中的核心地位及其未来发展趋势。