平衡二叉树AVL删除

简介:

平衡二叉树的插入过程: http://www.cnblogs.com/hujunzheng/p/4665451.html

对于二叉平衡树的删除采用的是二叉排序树删除的思路:

  假设被删结点是*p,其双亲是*f,不失一般性,设*p是*f的左孩子,下面分三种情况讨论:
⑴ 若结点*p是叶子结点,则只需修改其双亲结点*f的指针即可。
⑵ 若结点*p只有左子树PL或者只有右子树PR,则只要使PL或PR 成为其双亲结点的左子树即可。
⑶ 若结点*p的左、右子树均非空,先找到*p的中序前趋结点*s(注意*s是*p的左子树中的最右下的结点,它的右链域为空),然后有两种做法:
① 令*p的左子树直接链到*p的双亲结点*f的左链上,而*p的右子树链到*p的中序前趋结点*s的右链上。
② 以*p的中序前趋结点*s代替*p(即把*s的数据复制到*p中),将*s的左子树链到*s的双亲结点*q的左(或右)链上。

注:leftBalance_del 和 rightBalance_del方法是在删除节点时对左子树和右子树的平衡调整,leftBalance 和 rightBalance方法是在插入节点是对左右子树的平衡调整。 在具体调整的时候,和插入式调整时运用同样的分类方法,这里介绍一种情况,如下图所示(代码部分见代码中的提示)

 

 

复制代码
#include<iostream>
#include<cstring>
#include<string>
#include<queue>
#include<map>
#include<cstdio>
#define LH 1 //左高 
#define EH 0 //等高 
#define RH -1 //右高 
using namespace std;

template <typename ElemType>
class BSTNode{
    public:
        ElemType data;//节点的数据 
        int bf;//节点的平衡因子
        BSTNode *child[2];
        BSTNode(){
            child[0] = NULL;
            child[1] = NULL;
        }
};

typedef BSTNode<string> BSTnode, *BSTree;

template <typename ElemType>
class AVL{
    public:
        BSTNode<ElemType> *T;
        void buildT();
        void outT(BSTNode<ElemType> *T);
        void deleteAVL(BSTNode<ElemType>* &T, ElemType key, bool &shorter);
        bool insertAVL(BSTNode<ElemType>* &T, ElemType key, bool &taller); 
    private:
        void deleteNode(BSTNode<ElemType>* T, BSTNode<ElemType>* &s, BSTNode<ElemType>* p, bool flag, bool &shorter);
        void rotateT(BSTNode<ElemType>* &o, int x);//子树的左旋或者右旋
        void leftBalance(BSTNode<ElemType>* &o);
        void rightBalance(BSTNode<ElemType>* &o);
        
        void leftBalance_del(BSTNode<ElemType>* &o);
        void rightBalance_del(BSTNode<ElemType>* &o);
};

template <typename ElemType>
void AVL<ElemType>::rotateT(BSTNode<ElemType>* &o, int x){
    BSTNode<ElemType>* k = o->child[x^1];
    o->child[x^1] = k->child[x];
    k->child[x] = o;
    o = k; 
}

template <typename ElemType>
void AVL<ElemType>::outT(BSTNode<ElemType> *T){
    if(!T) return;
    cout<<T->data<<" ";
    outT(T->child[0]);
    outT(T->child[1]);
}

template <typename ElemType>
void AVL<ElemType>::buildT(){
   T = NULL;
   ElemType key;
   while(cin>>key){
           if(key==0) break;
           bool taller = false;
           insertAVL(T, key, taller);
   }
}

template <typename ElemType>
void AVL<ElemType>::deleteNode(BSTNode<ElemType>* T, BSTNode<ElemType>* &s, BSTNode<ElemType>* p, bool flag, bool &shorter){
    if(flag){
        flag = false;
        deleteNode(T, s->child[0], s, flag, shorter);
        if(shorter){
            switch(s->bf){
                case LH:
                    s->bf = EH;
                    shorter = false;
                    break; 
                case EH:
                    s->bf = RH;
                    shorter = true;
                    break; 
                case RH:
                    rightBalance_del(s);
                    shorter = false;
                    break;
            }
        }
    } else {
        if(s->child[1]==NULL){
            T->data = s->data;
            BSTNode<ElemType>* ss = s; 
            if(p != T){
                p->child[1] = s->child[0];
            } else {
                p->child[0] = s->child[0];
            }
            delete ss;//s是引用类型,不能delete s 
            shorter = true; 
            return ;
        }
        deleteNode(T, s->child[1], s, flag, shorter);
        if(shorter){
            switch(s->bf){
                case LH://这是上面配图的情况
                    leftBalance_del(s);
                    shorter = false; 
                    break; 
                case EH:
                    s->bf = LH;
                    shorter = true;
                    break; 
                case RH:
                    s->bf = EH;
                    shorter = false;
                    break;
            }
        } 
    }
} 

template <typename ElemType>
bool AVL<ElemType>::insertAVL(BSTNode<ElemType>* &T, ElemType key, bool &taller){
    if(!T){//插入新的节点,taller=true 那么树的高度增加 
        T = new BSTNode<ElemType>();
        T->data = key;
        T->bf = EH;
        taller = true;
    } else {
        if(T->data == key){
            taller = false;
            return false;
        }
        if(T->data > key){//向T的左子树进行搜索并插入 
            if(!insertAVL(T->child[0], key, taller)) return false;
            if(taller){//
                switch(T->bf){
                    case LH://此时左子树的高度高,左子树上又插入了一个节点,失衡,需要进行调整 
                        leftBalance(T);
                        taller = false;//调整之后高度平衡 
                        break; 
                    case EH:
                        T->bf = LH;
                        taller = true;
                        break; 
                    case RH:
                        T->bf = EH;
                        taller = false;                        
                        break;
                }
            }
        } 
        if(T->data < key) {//向T的右子树进行搜索并插入 
            if(!insertAVL(T->child[1], key, taller)) return false;
            switch(T->bf){
                case LH:
                    T->bf = EH;
                    taller = false; 
                    break; 
                case EH:
                    T->bf = RH;
                    taller = true;
                    break; 
                case RH:
                    rightBalance(T);    
                    taller = false;                    
                    break;
            }
        }
    }
    return true;
}


template <typename ElemType>
void AVL<ElemType>::deleteAVL(BSTNode<ElemType>* &T, ElemType key, bool &shorter){
    if(T->data == key){
        BSTNode<ElemType>*q, s; 
        if(!T->child[1]){//右子树为空,然后重接其左子树 
            q = T;
            T = T->child[0];
            shorter = true;//树变矮了 
            delete q;
        } else if(!T->child[0]){//左子树为空,重接其右子树 
            q = T;
            T = T->child[1];
            shorter = true;//树变矮了 
            delete q;
        } else {//左右子树都非空 ,也就是第三种情况 
            deleteNode(T, T, NULL, true, shorter);
            shorter = true;
        } 
    } else if(T->data > key) {//左子树 
        deleteAVL(T->child[0], key, shorter);
        if(shorter){
            switch(T->bf){
                case LH:
                    T->bf = EH; 
                    shorter = false;
                    break;
                case RH:
                    rightBalance_del(T);
                    shorter = false;
                    break;
                case EH:
                    T->bf = RH;
                    shorter = true;
                    break;
            }
        }
    } else if(T->data < key){//右子树 
        deleteAVL(T->child[1], key, shorter);
        if(shorter){
            switch(T->bf){
                case LH://这是上面配图的情况
                    leftBalance_del(T);
                    shorter = false;
break;
case RH: T->bf = EH; shorter = false; break; case EH: T->bf = LH; shorter = true; break; } } } } template <typename ElemType> void AVL<ElemType>::leftBalance(BSTNode<ElemType>* &T){ BSTNode<ElemType>* lchild = T->child[0]; switch(lchild->bf){//检查T的左子树的平衡度,并作相应的平衡处理 case LH://新节点 插入到 T的左孩子的左子树上,需要对T节点做单旋(右旋)处理 T->bf = lchild->bf = EH; rotateT(T, 1); break; case RH://新节点 插入到 T的左孩子的右子树上,需要做双旋处理 1.对lchild节点进行左旋,2.对T节点进行右旋 BSTNode<ElemType>* rdchild = lchild->child[1]; switch(rdchild->bf){//修改 T 及其左孩子的平衡因子 case LH: T->bf = RH; lchild->bf = EH; break; case EH: T->bf = lchild->bf = EH; break;//发生这种情况只能是 rdchild无孩子节点 case RH: T->bf = EH; lchild->bf = LH; break; } rdchild->bf = EH; rotateT(T->child[0], 0);//不要写成 rotateT(lc, 0);//这样的话T->lchild不会改变 rotateT(T, 1); break; } } template <typename ElemType> void AVL<ElemType>::rightBalance(BSTNode<ElemType>* &T){ BSTNode<ElemType>* rchild = T->child[1]; switch(rchild->bf){//检查T的左子树的平衡度,并作相应的平衡处理 case RH://新节点 插入到 T的右孩子的右子树上,需要对T节点做单旋(左旋)处理 T->bf = rchild->bf = EH; rotateT(T, 0); break; case LH://新节点 插入到 T的右孩子的左子树上,需要做双旋处理 1.对rchild节点进行右旋,2.对T节点进行左旋 BSTNode<ElemType>* ldchild = rchild->child[0]; switch(ldchild->bf){//修改 T 及其右孩子的平衡因子 case LH: T->bf = EH; rchild->bf = RH; break; case EH: T->bf = rchild->bf = EH; break;//发生这种情况只能是 ldchild无孩子节点 case RH: T->bf = LH; rchild->bf = EH; break; } ldchild->bf = EH; rotateT(T->child[1], 1); rotateT(T, 0); break; } } template <typename ElemType> void AVL<ElemType>::leftBalance_del(BSTNode<ElemType>* &T){ BSTNode<ElemType>* lchild = T->child[0]; switch(lchild->bf){ case LH: T->bf = EH; lchild->bf = EH; rotateT(T, 1); break; case EH: T->bf = LH; lchild->bf = EH; rotateT(T, 1); break; case RH://这是上面配图的情况 BSTNode<ElemType>* rdchild = lchild->child[1]; switch(rdchild->bf){ case LH: T->bf = RH; lchild->bf = rdchild->bf = EH; break; case EH: rdchild->bf = T->bf = lchild->bf = EH; break; case RH: T->bf = rdchild->bf = EH; lchild->bf = LH; break; } rotateT(T->child[0], 0); rotateT(T, 1); break; } } template <typename ElemType> void AVL<ElemType>::rightBalance_del(BSTNode<ElemType>* &T){ BSTNode<ElemType>* rchild = T->child[1]; BSTNode<ElemType>* ldchild = rchild->child[0]; switch(rchild->bf){ case LH: switch(ldchild->bf){ case LH: ldchild->bf = T->bf = EH; rchild->bf = RH; break; case EH: ldchild->bf = T->bf = rchild->bf = EH; break; case RH: rchild->bf = T->bf = EH; ldchild->bf = LH; break; } rotateT(T->child[1], 1); rotateT(T, 0); break; case EH: //outT(this->T);e EH: T->bf = RH; rchild->bf = EH; rotateT(T, 0); break; case RH: T->bf = EH; rchild->bf = EH; rotateT(T, 0); break; } } int main(){ AVL<int> avl; avl.buildT(); cout<<"平衡二叉树先序遍历如下:"<<endl; avl.outT(avl.T); cout<<endl; bool shorter = false; avl.deleteAVL(avl.T, 24, shorter); avl.outT(avl.T); return 0; } /* 13 24 37 90 53 0 13 24 37 90 53 12 26 0 */









本文转自 小眼儿 博客园博客,原文链接:http://www.cnblogs.com/hujunzheng/p/4669058.html,如需转载请自行联系原作者
目录
相关文章
|
2天前
|
人工智能 运维 安全
|
4天前
|
SpringCloudAlibaba 负载均衡 Dubbo
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
本文对比分析了SpringCloudAlibaba框架下Feign与Dubbo的服务调用性能及差异。Feign基于HTTP协议,使用简单,适合轻量级微服务架构;Dubbo采用RPC通信,性能更优,支持丰富的服务治理功能。通过实际测试,Dubbo在调用性能、负载均衡和服务发现方面表现更出色。两者各有适用场景,可根据项目需求灵活选择。
385 124
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
|
7天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
690 107
|
2天前
|
算法 Python
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)
221 152
|
4天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
201 127
|
3天前
|
Web App开发 前端开发 API
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
230 124
|
2天前
|
编解码 算法 自动驾驶
【雷达通信】用于集成传感和通信的OFDM雷达传感算法(Matlab代码实现)
【雷达通信】用于集成传感和通信的OFDM雷达传感算法(Matlab代码实现)
172 125
|
1天前
|
JavaScript 关系型数据库 MySQL
基于python的网上外卖订餐系统
本系统基于Python与Flask框架,结合MySQL数据库及Vue前端技术,实现了一个功能完善的网上订餐平台。系统涵盖餐品、订单、用户及评价管理模块,并深入研究订餐系统的商业模式、用户行为与服务质量。技术上采用HTML、PyCharm开发工具,支持移动端访问,助力餐饮业数字化转型。