hadoop之 Hadoop2.2.0中HDFS的高可用性实现原理

简介:

 在Hadoop2.0.0之前,NameNode(NN)在HDFS集群中存在单点故障(single point of failure),每一个集群中存在一个NameNode,如果NN所在的机器出现了故障,那么将导致整个集群无法利用,直到NN重启或者在另一台主机上启动NN守护线程。
主要在两方面影响了HDFS的可用性:
(1)、在不可预测的情况下,如果NN所在的机器崩溃了,整个集群将无法利用,直到NN被重新启动;
(2)、在可预知的情况下,比如NN所在的机器硬件或者软件需要升级,将导致集群宕机。
HDFS的高可用性将通过在同一个集群中运行两个NN(active NN & standby NN)来解决上面两个问题,这种方案允许在机器破溃或者机器维护快速地启用一个新的NN来恢复故障。
在典型的HA集群中,通常有两台不同的机器充当NN。在任何时间,只有一台机器处于Active状态;另一台机器是处于Standby状态。Active NN负责集群中所有客户端的操作;而Standby NN主要用于备用,它主要维持足够的状态,如果必要,可以提供快速的故障恢复。
为了让Standby NN的状态和Active NN保持同步,即元数据保持一致,它们都将会和JournalNodes守护进程通信。当Active NN执行任何有关命名空间的修改,它需要持久化到一半以上的JournalNodes上(通过edits log持久化存储),而Standby NN负责观察edits log的变化,它能够读取从JNs中读取edits信息,并更新其内部的命名空间。一旦Active NN出现故障,Standby NN将会保证从JNs中读出了全部的Edits,然后切换成Active状态。Standby NN读取全部的edits可确保发生故障转移之前,是和Active NN拥有完全同步的命名空间状态。
为了提供快速的故障恢复,Standby NN也需要保存集群中各个文件块的存储位置。为了实现这个,集群中所有的Database将配置好Active NN和Standby NN的位置,并向它们发送块文件所在的位置及心跳,如下图所示:

 

 

  在任何时候,集群中只有一个NN处于Active 状态是极其重要的。否则,在两个Active NN的状态下NameSpace状态将会出现分歧,这将会导致数据的丢失及其它不正确的结果。为了保证这种情况不会发生,在任何时间,JNs只允许一个NN充当writer。在故障恢复期间,将要变成Active 状态的NN将取得writer的角色,并阻止另外一个NN继续处于Active状态。
为了部署HA集群,你需要准备以下事项:
(1)、NameNode machines:运行Active NN和Standby NN的机器需要相同的硬件配置;
(2)、JournalNode machines:也就是运行JN的机器。JN守护进程相对来说比较轻量,所以这些守护进程可以可其他守护线程(比如NN,YARN ResourceManager)运行在同一台机器上。在一个集群中,最少要运行3个JN守护进程,这将使得系统有一定的容错能力。当然,你也可以运行3个以上的JN,但是为了增加系统的容错能力,你应该运行奇数个JN(3、5、7等),当运行N个JN,系统将最多容忍(N-1)/2个JN崩溃。
在HA集群中,Standby NN也执行namespace状态的checkpoints,所以不必要运行Secondary NN、CheckpointNode和BackupNode;事实上,运行这些守护进程是错误的。

source : https://www.iteblog.com/archives/833.html#comments

文章可以转载,必须以链接形式标明出处。  


本文转自 张冲andy 博客园博客,原文链接: http://www.cnblogs.com/andy6/p/7487208.html   ,如需转载请自行联系原作者

相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
149 6
|
1月前
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
60 3
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
85 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
37 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
46 0
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
40 4
|
1月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
75 5
|
1月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
36 4
|
1月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
149 5
|
1月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
89 3

相关实验场景

更多