uboot移植之do_bootm函数和do_bootm_linux函数解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

一:do_bootm函数

    (1)内核启动的时候通过bootm  30008000来启动内核,bootm这个命令对应的函数就是do_bootm。

    (2)

1
#define LINUX_ZIMAGE_MAGIC    0x016f2818

LINUX_ZIMAGE_MAGIC是一个魔数,其值等于0x016f2818。在zImage的头信息中,有特定的位存放了一个魔数,这个魔数就是用来表示该镜像是zImage,在启动过程中,通过读取头信息的特定位和该魔数进行比较,用于判断该镜像是不是zImage。

    (3)

1
2
3
4
5
6
7
8
     if  (argc < 2) {
         addr = load_addr;
         debug ( "*  kernel: default image load address = 0x%08lx\n" ,
                 load_addr);
     else  {
         addr = simple_strtoul(argv[1], NULL, 16);    //将字符串转成unsigend long 类型的数
         debug ( "*  kernel: cmdline image address = 0x%08lx\n" , img_addr);
     }

我们在启动内核时通过bootm 30008000命令进行的,该命令传入了两个参数  所以argc = 1 argv[0] = bootm argv[1] = 30008000,其中30008000就是内核镜像在DDR中的起始地址,通过可以知道也可以直接通过命令bootm去启动内核,这样的话,内核镜像的起始地址就由x210.h中进行硬编码定义了。

(4)

1
2
if  (*(ulong *)(addr + 9*4) == LINUX_ZIMAGE_MAGIC) {
         printf ( "Boot with zImage\n" );

这句话说明我们的魔数存放在zImage开头的(addr)36-39字节处,因为我们得到的zImage镜像其本质就是一个二进制文件,所以可以通过二进制查看工具winhex进行查看。

(5)images

1
static  bootm_headers_t images;

images是一个静态的全局变量,其类型是bootm_headers_t,这个数据类型存放的就是镜像的头信息(包括镜像的长度、类型、起始地址等),这就是对这个全局变量进行填充,用于以后使用。

以上主要是针对zImage镜像的校验。


二:do_bootm_linux函数分析

uboot通过通定义#ifdef CONFIG_ZIMAGE_BOOT来判断启动的镜像是zImage还是uImage。前面讲过,uboot支持zImage和uImage启动,其中zImage是后面添加的启动镜像。分析do_bootm函数的内容可以发现uboot还支持FIT格式的启动

FIT:设备树传参的方式来启动内核。这里不进行分析(主要是不懂),这里主要是对uImage镜像的启动进行分析。接下来继续分析do_bootm函数

(1)

1
2
os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,
             &images, &os_data, &os_len);

boot_get_kernel函数主要是用来获取内核的开始地址和内核的长度。需要注意的是这个函数传入了很多指针,也就是输出型参数,通过这个函数对这些指针变量进行赋值。

接下来的很大一部分就是对uImage镜像进行校验,并将头信息写入到全局变量image中。

(2)do_bootm函数执行到after_header_check:就对头信息校验完毕。

(3)后面一句switch (os),case有很多种选项,说明uboot不单单只能启动linux内核的镜像,也能启动其他内核。我们使用的是linux内核,所以后面会执行do_bootm_linux这个函数。

(4)do_bootm_linux函数

1
2
if  (images->legacy_hdr_valid) {
         ep = image_get_ep (&images->legacy_hdr_os_copy);   //镜像的入口

ep:entry point的缩写,就是程序的入口(类似于mian),一个镜像文件的起始执行部分不是在镜像的开头(镜像开头有n个字节的头信息),真正的镜像文件执行时第一句代码在镜像的中部某个字节处,
相当于头是有一定的偏移量的。这个偏移量记录在头信息中。

(5)

1
theKernel = ( void  (*)( int int , uint))ep;

将ep赋值给theKernel,则这个函数指针就指向了内存中加载的OS镜像的真正入口地址(就是操作系统的第一句执行的代码)。

(6)

1
printf  ( "\nStarting kernel ...\n\n" );

uboot打印的最后一条信息,如果uboot的在启动内核的过程中,看到了这条信息,就说明uboot是没有问题的。

(7)

1
theKernel (0, machid, bd->bi_boot_params);

之前讲过theKernel这个函数指针指向的就是ep,也就是镜像的入口,所以在这里也就是uboot尝试去启动内核,不过能否启动内核,uboot运行到这里就结束了。

三:镜像的执行过程

第一步先读取头信息,然后在头信息的特定地址找MAGIC_NUM,由此来确定镜像种类;第二步对镜像进行校验;第三步再次读取头信息,由特定地址知道这个镜像的各种信息(镜像长度、镜像种类、入口地址);第四步就去entrypoint处开始执行镜像。


本文转自 菜鸟养成记 51CTO博客,原文链接:http://blog.51cto.com/11674570/1925509

相关文章
|
13天前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
25 2
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
69 4
|
1月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
3月前
|
存储 前端开发 JavaScript
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
本文介绍了JavaScript中作用域的概念,包括全局变量和局部变量的区别,预解析机制(变量提升),以及函数返回值的使用和类型。通过具体示例讲解了变量的作用域、函数的返回值、以及如何通过return关键字从函数中返回数据。
24 1
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
|
2月前
|
弹性计算 网络协议 Ubuntu
如何在阿里云国际版Linux云服务器中自定义配置DNS
如何在阿里云国际版Linux云服务器中自定义配置DNS
|
2月前
|
存储
atoi函数解析以及自定义类型经典练习题
atoi函数解析以及自定义类型经典练习题
44 0
|
2月前
|
数据处理 Python
深入探索:Python中的并发编程新纪元——协程与异步函数解析
深入探索:Python中的并发编程新纪元——协程与异步函数解析
28 3
|
2月前
|
机器学习/深度学习 算法 C语言
【Python】Math--数学函数(详细附解析~)
【Python】Math--数学函数(详细附解析~)
|
3月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
136 6
|
3月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
153 3