Runtime源码分析带你了解OC实现过程。其中参考了大量的大神的代码以及文献里面也有个人的见解欢迎拍砖欢迎交流。
两种常见使用场景
/// weak属性@interface XX : XX@property(nonatomic,weak) Type* weakPtr;@end/// 代码块中使用{ /// 使用__weak __weak Type* weakPtr = [[SomeObject alloc] init]; }
根据调试信息发现两者的区别是
-
第一种进入到
id objc_storeWeak(id *location, id newObj)方法
```
/** -
This function stores a new value into a __weak variable. It would
-
be used anywhere a __weak variable is the target of an assignment.
-
@param location The address of the weak pointer itself
-
@param newObj The new object this weak ptr should now point to
-
@return \e newObj
/
id
objc_storeWeak(id location, id newObj)
{
return storeWeak
(location, (objc_object *)newObj);
}
```,> -
第二种绕一个远路先初始化
id objc_initWeak(id *location, id newObj)
``` Objective-C
/** -
Initialize a fresh weak pointer to some object location.
-
It would be used for code like:
-
(The nil case)
-
__weak id weakPtr;
-
(The non-nil case)
-
NSObject *o = ...;
-
__weak id weakPtr = o;
-
This function IS NOT thread-safe with respect to concurrent
-
modifications to the weak variable. (Concurrent weak clear is safe.)
-
@param location Address of __weak ptr.
-
@param newObj Object ptr.
/
id objc_initWeak(id location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}return storeWeak
(location, (objc_object*)newObj);
}
```,> -
两者最终进入到如下方法
template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>static idstoreWeak(id *location, objc_object *newObj) { ///略去下面会进行分析 ... return (id)newObj; }
所以重点就在 storeWeak
这个方法中let's do it
分析源码
storeWeak
源码的如下
template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>static id storeWeak(id *location, objc_object *newObj) { assert(haveOld || haveNew); if (!haveNew) assert(newObj == nil); Class previouslyInitializedClass = nil; id oldObj; SideTable *oldTable; SideTable *newTable; // Acquire locks for old and new values. // Order by lock address to prevent lock ordering problems. // Retry if the old value changes underneath us. retry: if (haveOld) { oldObj = *location; oldTable = &SideTables()[oldObj]; } else { oldTable = nil; } if (haveNew) { newTable = &SideTables()[newObj]; } else { newTable = nil; } SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable); if (haveOld && *location != oldObj) { SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); goto retry; } // Prevent a deadlock between the weak reference machinery // and the +initialize machinery by ensuring that no // weakly-referenced object has an un-+initialized isa. /// 注释大意是通过下面操作保证所有的弱引用对象的isa都被初始化这样可以防止死锁PS,这里我不是太明白求指教 if (haveNew && newObj) { /// 下面的操作是初始化isa Class cls = newObj->getIsa(); if (cls != previouslyInitializedClass && !((objc_class *)cls)->isInitialized()) { SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); _class_initialize(_class_getNonMetaClass(cls, (id)newObj)); // If this class is finished with +initialize then we're good. // If this class is still running +initialize on this thread // (i.e. +initialize called storeWeak on an instance of itself) // then we may proceed but it will appear initializing and // not yet initialized to the check above. // Instead set previouslyInitializedClass to recognize it on retry. previouslyInitializedClass = cls; goto retry; } } // Clean up old value, if any. if (haveOld) { weak_unregister_no_lock(&oldTable->weak_table, oldObj, location); } // Assign new value, if any. if (haveNew) { newObj = (objc_object *) weak_register_no_lock(&newTable->weak_table, (id)newObj, location, crashIfDeallocating); // weak_register_no_lock returns nil if weak store should be rejected // Set is-weakly-referenced bit in refcount table. if (newObj && !newObj->isTaggedPointer()) { newObj->setWeaklyReferenced_nolock(); } // Do not set *location anywhere else. That would introduce a race. *location = (id)newObj; } else { // No new value. The storage is not changed. } SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); return (id)newObj; }
-
template
是C++的一种泛型实现相当于这里申明了变量或者类型可以在代码块中使用用于处理不同的未知类型&枚举。 -
haveOld 弱引用是否已经有所指向
-
haveNew 是否有新的指向
-
CrashIfDeallocating 执行方法时发生Deallocate是否Crash
PS:初始化ISA那部分为何能阻止死锁我没有看懂
该函数流程如下
重点来了
/// SideTablesoldTable = &SideTables()[oldObj]; newTable = &SideTables()[newObj];/// taggedPointer是什么鬼isTaggedPointer/// 注册弱引用weak_register_no_lock(&newTable->weak_table, (id)newObj, location,crashIfDeallocating);/// 消除弱引用weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
SideTable
SideTable
是一个结构体定义如下
struct SideTable { spinlock_t slock; RefcountMap refcnts; weak_table_t weak_table; SideTable() { memset(&weak_table, 0, sizeof(weak_table)); } ~SideTable() { _objc_fatal("Do not delete SideTable."); } ///锁 .... };
-
spinlock_t solck 锁
-
RefcountMap refcnts 强引用使用略过
-
weak_table_t weak_table 弱引用表
SideTable
是存放引用关系的对象通过Hash值操作在SideTableBuf
中寻找与之对应的SideTable
SideTableBuf
初始化过程如下alignas(StripedMap<SideTable>) static uint8_t SideTableBuf[sizeof(StripedMap<SideTable>)];/// 会在Objc_init中调用该方法static void SideTableInit() {/// 这句话貌似没什么卵用求指教new (SideTableBuf) StripedMap<SideTable>(); }/// 寻找SideTablestatic StripedMap<SideTable>& SideTables() {return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf); }
StripedMap
是一个泛型类并重写了[]运算符通过对象的地址运算出Hash值通过该hash值找到对象的SideTable
```
template
class StripedMap {
enum { CacheLineSize = 64 };if TARGET_OS_EMBEDDED
enum { StripeCount = 8 };
else
enum { StripeCount = 64 };
endif
struct PaddedT {
T value alignas(CacheLineSize);
};
PaddedT array[StripeCount];
/// 运算
static unsigned int indexForPointer(const void *p) {
uintptr_t addr = reinterpret_cast(p);
/// 位运算可以控制返回值在0-63之间
return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
}
public:
T& operator[] (const void *p) {
return array[indexForPointer(p)].value;
}
/// 下面略去
...
}
### taggedPointer简单的说这是一种优化手段即将对象的值存入对象的地址中这些工程师简直丧心病狂就为了省一点内存嘛### 进入正题看看怎么实现弱引用的先看看注册的过程吧
/**
-
Registers a new (object, weak pointer) pair. Creates a new weak
-
object entry if it does not exist.
-
@param weak_table The global weak table.
-
@param referent The object pointed to by the weak reference.
-
@param referrer The weak pointer address.
/
id weak_register_no_lock(weak_table_t weak_table, id referent_id,
id referrer_id, bool crashIfDeallocating)
{
/// 转化为object
objc_object referent = (objc_object *)referent_id;
objc_object referrer = (objc_object )referrer_id;
/// 如果是taggedPointer,就没有引用的过程了
if (!referent || referent->isTaggedPointer()) return referent_id;// ensure that the referenced object is viable
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (allowsWeakReference)(objc_object , SEL) =
(BOOL()(objc_object , SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
/// 如果正在被销毁
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}// now remember it and where it is being stored
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
append_referrer(entry, referrer);
}
else {
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}// Do not set *referrer. objc_storeWeak() requires that the
// value not change.return referent_id;
}
```
先从这行数的参数说起参数有4个 -
weak_table_t *weak_table hash表
-
id referent_id, 弱引用对象
-
id *referrer_id, 弱引用指针
-
bool crashIfDeallocating 如果正在Deallocate是否crash
后三个参数不用解释主要解释第一个参数weak_table_t
,定义如下
/** * The global weak references table. Stores object ids as keys, * and weak_entry_t structs as their values. */struct weak_table_t { weak_entry_t *weak_entries; ///数组用于存储引用对象集合 size_t num_entries; /// 存储数目 uintptr_t mask; /// 当前分配容量 uintptr_t max_hash_displacement; /// 已使用容量};
没错weak_table_t
就是寄存在SideTable
中
-
weak_entry_t *weak_entries; ///数组用于存储引用对象集合
-
size_t num_entries; /// 存储数目
-
uintptr_t mask; /// 当前分配容量
-
uintptr_t max_hash_displacement; /// 已使用容量
定义中我们重点关注weak_entry_t
struct weak_entry_t { DisguisedPtr<objc_object> referent; union { struct { weak_referrer_t *referrers; uintptr_t out_of_line_ness : 2; uintptr_t num_refs : PTR_MINUS_2; uintptr_t mask; uintptr_t max_hash_displacement; }; struct { // out_of_line_ness field is low bits of inline_referrers[1] weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; }; }; bool out_of_line() { return (out_of_line_ness == REFERRERS_OUT_OF_LINE); } weak_entry_t& operator=(const weak_entry_t& other) { memcpy(this, &other, sizeof(other)); return *this; } weak_entry_t(objc_object *newReferent, objc_object **newReferrer) : referent(newReferent) { inline_referrers[0] = newReferrer; for (int i = 1; i < WEAK_INLINE_COUNT; i++) { inline_referrers[i] = nil; } } };
weak_entry_t
是最终存放对象和引用指针的地方referent
是被引用的对象联合体union
释义如下
-
weak_referrer_t *referrers; 存放引用指针
-
uintptr_t out_of_line_ness : 2 标识当前存储是否在初始WEAK_INLINE_COUNT个数之内
-
uintptr_t num_refs : PTR_MINUS_2 引用的个数
-
uintptr_t mask; 实际分配容量
-
uintptr_t max_hash_displacement; 实际使用容量包括已经被释放的每次调整容量时会更新重置
-
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; 当引用个数小于WEAK_INLINE_COUNT时使用该数组存放。
注册引用过程中重点关注下面代码
{ weak_entry_t *entry; /// 查找是否已经注册过了 if ((entry = weak_entry_for_referent(weak_table, referent))) { /// 加上去就可以了 append_referrer(entry, referrer); } else { /// 新建一个 weak_entry_t new_entry(referent, referrer); /// 调整weak_table_t 的容量大小 weak_grow_maybe(weak_table); /// 插入一个 weak_entry_insert(weak_table, &new_entry); } }
新建
通过weak_entry_t
的源码可以看到新建一个weak_entry_t
的过程是
-
将被引用对象赋予referent
-
将引用指针放入到
inline_referrers
因为此时数目还很少
调整weak_table_t的容量大小
static void weak_resize(weak_table_t *weak_table, size_t new_size){ size_t old_size = TABLE_SIZE(weak_table); weak_entry_t *old_entries = weak_table->weak_entries; weak_entry_t *new_entries = (weak_entry_t *) calloc(new_size, sizeof(weak_entry_t)); weak_table->mask = new_size - 1; weak_table->weak_entries = new_entries; /// 重置 weak_table->max_hash_displacement = 0; weak_table->num_entries = 0; // restored by weak_entry_insert below if (old_entries) { weak_entry_t *entry; weak_entry_t *end = old_entries + old_size; for (entry = old_entries; entry < end; entry++) { if (entry->referent) { weak_entry_insert(weak_table, entry); } } free(old_entries); } }// Grow the given zone's table of weak references if it is full.static void weak_grow_maybe(weak_table_t *weak_table){ size_t old_size = TABLE_SIZE(weak_table); // Grow if at least 3/4 full. if (weak_table->num_entries >= old_size * 3 / 4) { weak_resize(weak_table, old_size ? old_size*2 : 64); } }
当实际的数目大于old_sizeold_size就是mask的大小+1)就去调整大小同时重置max_hash_displacement为0通过calloc函数动态分配mask个的内存然后通过循环将原有的weak_entry_t
插入到新的容器中在插入的过程中更新max_hash_displacement.
在weak_table_t
插入weak_entry_t
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry) { weak_entry_t *weak_entries = weak_table->weak_entries; assert(weak_entries != nil); size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask); size_t index = begin; size_t hash_displacement = 0; while (weak_entries[index].referent != nil) { index = (index+1) & weak_table->mask; if (index == begin) bad_weak_table(weak_entries); hash_displacement++; } /// 把新的加进去 weak_entries[index] = *new_entry; /// 引用计数+1 weak_table->num_entries++; /// 扩容前最大占位 if (hash_displacement > weak_table->max_hash_displacement) { weak_table->max_hash_displacement = hash_displacement; } }
过程比较简单也是利用hash处理方便后面查找。
在weak_table_t
查找对象是通过循环遍历的方式过程如下
static weak_entry_t * weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent) { assert(referent); weak_entry_t *weak_entries = weak_table->weak_entries; if (!weak_entries) return nil; size_t begin = hash_pointer(referent) & weak_table->mask; /// 获取hash值 size_t index = begin; size_t hash_displacement = 0; /// 循环遍历查找 while (weak_table->weak_entries[index].referent != referent) { index = (index+1) & weak_table->mask; if (index == begin) bad_weak_table(weak_table->weak_entries); // 查找到最大的时候结束 hash_displacement++; if (hash_displacement > weak_table->max_hash_displacement) { return nil; } } return &weak_table->weak_entries[index]; }
在已有的weak_entry_t
中加入引用
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer) { /// 如果是数组,即个数比较少 if (! entry->out_of_line()) { // Try to insert inline. for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) { if (entry->inline_referrers[i] == nil) { entry->inline_referrers[i] = new_referrer; return; } } // Couldn't insert inline. Allocate out of line. weak_referrer_t *new_referrers = (weak_referrer_t *) calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t)); // This constructed table is invalid, but grow_refs_and_insert // will fix it and rehash it. for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) { new_referrers[i] = entry->inline_referrers[i]; } entry->referrers = new_referrers; entry->num_refs = WEAK_INLINE_COUNT; entry->out_of_line_ness = REFERRERS_OUT_OF_LINE; entry->mask = WEAK_INLINE_COUNT-1; entry->max_hash_displacement = 0; } assert(entry->out_of_line()); if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) { return grow_refs_and_insert(entry, new_referrer); } size_t begin = w_hash_pointer(new_referrer) & (entry->mask); size_t index = begin; size_t hash_displacement = 0; while (entry->referrers[index] != nil) { hash_displacement++; index = (index+1) & entry->mask; if (index == begin) bad_weak_table(entry); } if (hash_displacement > entry->max_hash_displacement) { entry->max_hash_displacement = hash_displacement; } weak_referrer_t &ref = entry->referrers[index]; ref = new_referrer; entry->num_refs++; }
该过程同在weak_table_t
中插入weak_entry_t
如出一辙要注意的是需要判断引用的个数当引用个数大于WEAK_INLINE_COUNT时需要将原有的引用指针也移到referrers
中同时更新相关计数器。
上面过程的流程如下