Python基础框架和工具

简介: 最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进行科学计算环境的搭建非常方便。

Python基础框架和工具

   最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进行科学计算环境的搭建非常方便。
  Anaconda是和Canopy类似的科学计算环境,安装非常方便,而且自带的conda包管理器也十分强大。

1、 Anaconda介绍:
我们可以从http://continuum.io/downloads上下载适合你操作系统的Anaconda,那么我们为啥用Anaconda进行Python部署呢?有一下几个方面的因素:
(1) 库/软件包
可以安装100多个重要的Python库和软件包,而且可以版本一致的方式安装所有的软件包。
(2) 开源
Anaconda是免费开源的,而且分发版本中所有的库和软件包也是如此。
(3) 跨平台
Anaconda可以运用于Windows、Mac OS 和Linux平台。
(4) 自动更新

Anaconda中的库和软件包可以免费在线自动更新。

(5) Conda软件包管理程序
Conda软件管理程序可以并行使用多个Python版本和多个版本的库。

Anaconda的安装非常简单,在windows下只需双击安装程序,然后安装提示一步步下去即可,在Linux中,在shell中进入安装程序所在的目录,然后输入:
bash Anaconda -1.x.x-Linux-x86[_64].sh

安装完成后,就可以利用这100多个库和软件包了,anaconda所包含的一些库和软件包:

2、安装模板:
Anaconda已经自带了很多的科学计算用的库和模板,但是这还不够,有时候我们需要安装一些其他模板:
conda
anaconda自带了conda命令用于安装模板和更新模板,比如:

安装模板

conda install scipy

更新模板

conda update scipy

更新所有的模块

conda update --all

pip
pip是Python自带的模块安装工具,比如:
pip install requests
pip install requests --upgrade

升级Anaconda
新版本发布后,可以利用pyenv来安装最新版本,也可以利用Anaconda自带的更新工具升级:
conda update conda
conda update anaconda

python开发常用的IDE:
(1) Spyder
(2) IPython
(3)PyCharm

下面用conda创建一个名叫python2的版本为python2.7的环境。
conda create -n python2 python=2.7
这样就会在Anaconda安装目录下的envs目录下创建python2这个目录。
11

向其中安装扩展可以:
直接用 conda install 并用 -n 指明安装到的环境,这里自然就是 python2 ,例如:
conda install -n python2 pandas
想使用Spyder,可以配置好环境变量后。在cmd窗口使用Spyder就可以打开窗口了:

22

目录
相关文章
|
3月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
367 1
|
3月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
298 0
|
3月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
474 0
|
3月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
200 0
|
4月前
|
存储 缓存 测试技术
理解Python装饰器:简化代码的强大工具
理解Python装饰器:简化代码的强大工具
|
5月前
|
程序员 测试技术 开发者
Python装饰器:简化代码的强大工具
Python装饰器:简化代码的强大工具
237 92
|
4月前
|
机器学习/深度学习 编解码 Python
Python图片上采样工具 - RealESRGANer
Real-ESRGAN基于深度学习实现图像超分辨率放大,有效改善传统PIL缩放的模糊问题。支持多种模型版本,推荐使用魔搭社区提供的预训练模型,适用于将小图高质量放大至大图,放大倍率越低效果越佳。
324 3
|
4月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
117 1
|
5月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
955 1
|
4月前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
852 0

推荐镜像

更多