kafka 、 zookeeper 集群(一)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
应用型负载均衡 ALB,每月750个小时 15LCU
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:

一、入门

    1、简介

   Kafka is a distributed,partitioned,replicated commit logservice。它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。

wKiom1gtdlqwSgAsAAAZGUoDqeo657.png-wh_50

 2、Topics/logs

    一个Topic可以认为是一类消息(应用程序)可理解为IA+jdk或ism+jdk,每个topic将被分成多个partition(区),每个partition在存储层面是appendlog文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。

wKioL1gtdsyi9xQQAAA49hFxtKo080.png-wh_50

kafka和JMS(Java MessageService)实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除.日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费.kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支.

 

    对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费.事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值..(offset将会保存在zookeeper中,参见下文)

 

    kafka集群几乎不需要维护任何consumer和producer状态信息,这些信息有zookeeper保存;因此producer和consumer的客户端实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响.

 

   partitions的设计目的有多个.最根本原因是kafka基于文件存储.通过分区,可以将日志内容分散到多个server上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率.此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力.(具体原理参见下文).


3、Distribution

    一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性.

 

    基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为"leader";leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可..由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定.

 

    Producers

    Producer将消息发布到指定的Topic中,同时Producer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等.

 

    Consumers

    本质上kafka只支持Topic.每个consumer属于一个consumergroup;反过来说,每个group中可以有多个consumer.发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费.

 

    如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡.

    如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者.

    在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息.kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的.事实上,从Topic角度来说,消息仍不是有序的.

 

    kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息.

 

    Guarantees

    1) 发送到partitions中的消息将会按照它接收的顺序追加到日志中

    2) 对于消费者而言,它们消费消息的顺序和日志中消息顺序一致.

    3) 如果Topic的"replicationfactor"为N,那么允许N-1个kafka实例失效.

wKiom1gtelripbKGAABMkl1rlz4549.png-wh_50

二、使用场景

 

    1、Messaging  

    对于一些常规的消息系统,kafka是个不错的选择;partitons/replication和容错,可以使kafka具有良好的扩展性和性能优势.不过到目前为止,我们应该很清楚认识到,kafka并没有提供JMS中的"事务性""消息传输担保(消息确认机制)""消息分组"等企业级特性;kafka只能使用作为"常规"的消息系统,在一定程度上,尚未确保消息的发送与接收绝对可靠(比如,消息重发,消息发送丢失等)

 

    2、Websitactivity tracking

    kafka可以作为"网站活性跟踪"的最佳工具;可以将网页/用户操作等信息发送到kafka中.并实时监控,或者离线统计分析等

 

    3、LogAggregation

    kafka的特性决定它非常适合作为"日志收集中心";application可以将操作日志"批量""异步"的发送到kafka集群中,而不是保存在本地或者DB中;kafka可以批量提交消息/压缩消息等,这对producer端而言,几乎感觉不到性能的开支.此时consumer端可以使hadoop等其他系统化的存储和分析系统.


三、设计原理

 

    kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力.

 

    1、持久性

    kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化几乎没有可能.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.


2、性能

    需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题.kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息.不过消息量的大小可以通过配置文件来指定.对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换. 其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式.

 

    3、生产者

    负载均衡:producer将会和Topic下所有partition leader保持socket连接;消息由producer直接通过socket发送到broker,中间不会经过任何"路由层".事实上,消息被路由到哪个partition上,有producer客户端决定.比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的.

 

    其中partitionleader的位置(host:port)注册在zookeeper中,producer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件.

    异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当producer失效时,那些尚未发送的消息将会丢失。

 

    4、消费者

    consumer端向broker发送"fetch"请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息.

 

    在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端.不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch.

 

   其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态.这就要求JMS broker需要太多额外的工作.在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的.当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset.由此可见,consumer客户端也很轻量级

wKiom1gtesPi4CpqAABOcO4hhPQ628.png-wh_50

5、消息传送机制

    对于JMS实现,消息传输担保非常直接:有且只有一次(exactlyonce).在kafka中稍有不同:

    1) at most once: 最多一次,这个和JMS中"非持久化"消息类似.发送一次,无论成败,将不会重发.

    2) at least once: 消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功.

    3) exactly once: 消息只会发送一次.

    at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理.那么此后"未处理"的消息将不能被fetch到,这就是"at most once".

    at least once: 消费者fetch消息,然后处理消息,然后保存offset.如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态.

    exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的.

    通常情况下"at-least-once"是我们搜选.(相比at mostonce而言,重复接收数据总比丢失数据要好).

6、复制备份

    kafka将每个partition数据复制到多个server上,任何一个partition有一个leader和多个follower(可以没有);备份的个数可以通过broker配置文件来设定.leader处理所有的read-write请求,follower需要和leader保持同步.Follower和consumer一样,消费消息并保存在本地日志中;leader负责跟踪所有的follower状态,如果follower"落后"太多或者失效,leader将会把它从replicas同步列表中删除.当所有的follower都将一条消息保存成功,此消息才被认为是"committed",那么此时consumer才能消费它.即使只有一个replicas实例存活,仍然可以保证消息的正常发送和接收,只要zookeeper集群存活即可.(不同于其他分布式存储,比如hbase需要"多数派"存活才行)

    当leader失效时,需在followers中选取出新的leader,可能此时follower落后于leader,因此需要选择一个"up-to-date"的follower.选择follower时需要兼顾一个问题,就是新leaderserver上所已经承载的partition leader的个数,如果一个server上有过多的partition leader,意味着此server将承受着更多的IO压力.在选举新leader,需要考虑到"负载均衡".

 

    7.日志

   如果一个topic的名称为"my_topic",它有2个partitions,那么日志将会保存在my_topic_0和my_topic_1两个目录中;日志文件中保存了一序列"log entries"(日志条目),每个log entry格式为"4个字节的数字N表示消息的长度" + "N个字节的消息内容";每个日志都有一个offset来唯一的标记一条消息,offset的值为8个字节的数字,表示此消息在此partition中所处的起始位置..每个partition在物理存储层面,有多个log file组成(称为segment).segmentfile的命名为"最小offset".kafka.例如"00000000000.kafka";其中"最小offset"表示此segment中起始消息的offset.

wKioL1gtew3S9HVsAADWC6ZzgHo758.png-wh_50

其中每个partiton中所持有的segments列表信息会存储在zookeeper中.

    当segment文件尺寸达到一定阀值时(可以通过配置文件设定,默认1G),将会创建一个新的文件;当buffer中消息的条数达到阀值时将会触发日志信息flush到日志文件中,同时如果"距离最近一次flush的时间差"达到阀值时,也会触发flush到日志文件.如果broker失效,极有可能会丢失那些尚未flush到文件的消息.因为server意外实现,仍然会导致log文件格式的破坏(文件尾部),那么就要求当server启东是需要检测最后一个segment的文件结构是否合法并进行必要的修复.

    获取消息时,需要指定offset和最大chunk尺寸,offset用来表示消息的起始位置,chunksize用来表示最大获取消息的总长度(间接的表示消息的条数).根据offset,可以找到此消息所在segment文件,然后根据segment的最小offset取差值,得到它在file中的相对位置,直接读取输出即可.

    日志文件的删除策略非常简单:启动一个后台线程定期扫描logfile列表,把保存时间超过阀值的文件直接删除(根据文件的创建时间).为了避免删除文件时仍然有read操作(consumer消费),采取copy-on-write方式.

 

    8、分配

    kafka使用zookeeper来存储一些meta信息,并使用了zookeeperwatch机制来发现meta信息的变更并作出相应的动作(比如consumer失效,触发负载均衡等)

    1) Broker node registry: 当一个kafkabroker启动后,首先会向zookeeper注册自己的节点信息(临时znode),同时当broker和zookeeper断开连接时,此znode也会被删除.

    格式: /broker/ids/[0...N]  -->host:port;其中[0..N]表示broker id,每个broker的配置文件中都需要指定一个数字类型的id(全局不可重复),znode的值为此broker的host:port信息.

    2) Broker Topic Registry: 当一个broker启动时,会向zookeeper注册自己持有的topic和partitions信息,仍然是一个临时znode.

    格式:/broker/topics/[topic]/[0...N]  其中[0..N]表示partition索引号.

    3) Consumer and Consumergroup: 每个consumer客户端被创建时,会向zookeeper注册自己的信息;此作用主要是为了"负载均衡".

    一个group中的多个consumer可以交错的消费一个topic的所有partitions;简而言之,保证此topic的所有partitions都能被此group所消费,且消费时为了性能考虑,让partition相对均衡的分散到每个consumer上.

    4) Consumer id Registry: 每个consumer都有一个唯一的ID(host:uuid,可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.

    格式:/consumers/[group_id]/ids/[consumer_id]

    仍然是一个临时的znode,此节点的值为{"topic_name":#streams...},即表示此consumer目前所消费的topic +partitions列表.

    5) Consumer offset Tracking: 用来跟踪每个consumer目前所消费的partition中最大的offset.

    格式:/consumers/[group_id]/offsets/[topic]/[broker_id-partition_id]-->offset_value

    此znode为持久节点,可以看出offset跟group_id有关,以表明当group中一个消费者失效,其他consumer可以继续消费.

    6) Partition Owner registry: 用来标记partition被哪个consumer消费.临时znode

    格式:/consumers/[group_id]/owners/[topic]/[broker_id-partition_id]-->consumer_node_id当consumer启动时,所触发的操作:

    A) 首先进行"Consumerid Registry";

    B) 然后在"Consumerid Registry"节点下注册一个watch用来监听当前group中其他consumer的"leave"和"join";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).

    C) 在"Brokerid registry"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.

wKioL1gtezOQjSdcAAAtAa_QVZU499.png-wh_50

 1)Producer端使用zookeeper用来"发现"broker列表,以及和Topic下每个partition leader建立socket连接并发送消息.

    2) Broker端使用zookeeper用来注册broker信息,已经监测partitionleader存活性.

   3) Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partition leader建立socket连接,并获取消息.

四、主要配置

 

   1、Broker配置 

wKiom1gte9uwhfWjAACvrtsbFPI465.png-wh_50


2.Consumer主要配置


wKioL1gte__wrIvCAABZ8vWEJhk574.png-wh_50



3.Producer主要配置


wKiom1gtfCLSqu-OAACU9gb8WhM186.png-wh_50

以上是关于kafka一些基础说明,在其中我们知道如果要kafka正常运行,必须配置zookeeper,否则无论是kafka集群还是客户端的生存者和消费者都无法正常的工作的,以下是对zookeeper进行一些简单的介绍:


五、zookeeper集群

   zookeeper是一个为分布式应用提供一致性服务的软件,它是开源的Hadoop项目的一个子项目,并根据google发表的一篇论文来实现的。zookeeper为分布式系统提供了高笑且易于使用的协同服务,它可以为分布式应用提供相当多的服务,诸如统一命名服务,配置管理,状态同步和组服务等。zookeeper接口简单,我们不必过多地纠结在分布式系统编程难于处理的同步和一致性问题上,你可以使用zookeeper提供的现成(off-the-shelf)服务来实现来实现分布式系统额配置管理,组管理,Leader选举等功能

zookeeper集群的节点最好设置成奇数个。因为策略是过半的节点挂掉,整个集群宕机。



本文转自 周新宇1991 51CTO博客,原文链接:http://blog.51cto.com/zhouxinyu1991/1873991,如需转载请自行联系原作者


相关文章
|
15天前
|
消息中间件 运维 Java
搭建Zookeeper、Kafka集群
本文详细介绍了Zookeeper和Kafka集群的搭建过程,涵盖系统环境配置、IP设置、主机名设定、防火墙与Selinux关闭、JDK安装等基础步骤。随后深入讲解了Zookeeper集群的安装与配置,包括数据目录创建、节点信息设置、SASL认证配置及服务启动管理。接着描述了Kafka集群的安装,涉及配置文件修改、安全认证设置、生产消费认证以及服务启停操作。最后通过创建Topic、发送与查看消息等测试验证集群功能。全网可搜《小陈运维》获取更多信息。
111 1
|
5月前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
192 4
|
6月前
|
消息中间件 运维 算法
Kafka 为什么要抛弃 Zookeeper?
本文探讨了Kafka为何逐步淘汰ZooKeeper。长久以来,ZooKeeper作为Kafka的核心组件,负责集群管理和协调任务。然而,随着Kafka的发展,ZooKeeper带来的复杂性增加、性能瓶颈及一致性问题日益凸显。为解决这些问题,Kafka引入了KRaft,这是一种基于Raft算法的内置元数据管理方案,不仅简化了部署流程,还提升了系统的一致性和扩展性。本文详细分析了这一转变背后的原因及其带来的优势,并展望了Kafka未来的发展方向。
439 1
|
1月前
|
消息中间件 人工智能 安全
秒级灾备恢复:Kafka 2025 AI自愈集群下载及跨云Topic迁移终极教程
Apache Kafka 2025作为企业级实时数据中枢,实现五大革新:量子安全传输(CRYSTALS-Kyber抗量子加密算法)、联邦学习总线(支持TensorFlow Federated/Horizontal FL框架)、AI自愈集群(MTTR缩短至30秒内)、多模态数据处理(原生支持视频流、3D点云等)和跨云弹性扩展(AWS/GCP/Azure间自动迁移)。平台采用混合云基础设施矩阵与软件依赖拓扑设计,提供智能部署架构。安装流程涵盖抗量子安装包获取、量子密钥配置及联邦学习总线设置。
|
4月前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
4月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
4月前
|
消息中间件 存储 Kafka
2024最全Kafka集群方案汇总
Apache Kafka 是一个高吞吐量、可扩展、可靠的分布式消息系统,广泛应用于数据驱动的应用场景。Kafka 支持集群架构,具备高可用性和容错性。其核心组件包括 Broker(服务器实例)、Topic(消息分类)、Partition(有序消息序列)、Producer(消息发布者)和 Consumer(消息消费者)。每个分区有 Leader 和 Follower,确保数据冗余和高可用。Kafka 2.8+ 引入了不依赖 Zookeeper 的 KRaft 协议,进一步简化了集群管理。常见的集群部署方案包括单节点和多节点集群,后者适用于生产环境以确保高可用性。
227 0
|
5月前
|
消息中间件 存储 Prometheus
Kafka集群如何配置高可用性
Kafka集群如何配置高可用性
106 1
|
3月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
6月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
267 1
下一篇
oss创建bucket