Java线程池

简介:

1. 关于ThreadPoolExecutor

为了更好地控制多线程,JDK提供了一套Executor框架,帮助开发人员有效的进行线程控制,其本质就是一个线程池。其中ThreadPoolExecutor是线程池中最核心的一个类,后面提到的四种线程池都是基于ThreadPoolExecutor实现的。

ThreadPoolExecutor提供了四个构造方法,我们看下最重要的一个构造函数:

public class ThreadPoolExecutor extends AbstractExecutorService {    public ThreadPoolExecutor(int corePoolSize,                              int maximumPoolSize,                              long keepAliveTime,TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler);
}

函数的参数含义如下:

  • corePoolSize: 线程池维护线程的最少数量

  • maximumPoolSize:线程池维护线程的最大数量

  • keepAliveTime: 线程池维护线程所允许的空闲时间

  • unit: 线程池维护线程所允许的空闲时间的单位

  • workQueue: 线程池所使用的缓冲队列

  • handler: 线程池对拒绝任务的处理策略

线程池执行的过程:

  1. 线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面有任务,线程池也不会马上执行它们。

  2. 当调用 execute() 方法添加一个任务时,线程池会做如下判断:
    a. 如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
    b. 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列。
    c. 如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要创建线程运行这个任务;
    d. 如果队列满了,而且正在运行的线程数量大于或等于 maximumPoolSize,那么线程池会抛出异常,告诉调用者“我不能再接受任务了”。

  3. 当一个线程完成任务时,它会从队列中取下一个任务来执行。

  4. 当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。

ThreadPoolExecutor的继承关系:

658141-20170514011255769-720738172.png


ThreadPoolExecutor中的队列:

ThreadPoolExecutor内部应用了任务缓存队列,即workQueue,它用来存放等待执行的任务。

workQueue的类型为BlockingQueue,通常可以取下面三种类型:

  1. ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;

  2. LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;

  3. synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。

任务拒绝策略:

当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

扩展线程池(记录任务执行日志):

在默认的ThreadPoolExecutor实现中,提供了空的beforeExecutor和afterExecutor的实现,在实际应用中可以对其进行扩展来实现对线程池运行状态的追踪,输出一些有用的调试信息,以帮助系统故障诊断,这对于多线程程序错误排查是很有帮助的。

ThreadPoolExecutor例子:

import java.util.concurrent.BlockingQueue;import java.util.concurrent.LinkedBlockingQueue;import java.util.concurrent.RejectedExecutionHandler;import java.util.concurrent.ThreadPoolExecutor;import java.util.concurrent.TimeUnit;import java.util.concurrent.atomic.AtomicLong;public class ThreadPool {    private int corePoolSize = 1; // 线程池维护线程的最少数量
    private int maximumPoolSize = 10;// 线程池维护线程的最大数量
    private long keepAliveTime = 3; // 线程池维护线程所允许的空闲时间
    private TimeUnit unit = TimeUnit.SECONDS;// 线程池维护线程所允许的空闲时间的单位
    private BlockingQueue<Runnable> workQueue; // 线程池所使用的缓冲队列
    private RejectedExecutionHandler handler; // 线程池对拒绝任务的处理策略
    private static AtomicLong along = new AtomicLong(0);    public void run() throws InterruptedException {
        ThreadPoolExecutor pool = new ThreadPoolExecutor(corePoolSize,
                maximumPoolSize, keepAliveTime, unit,                new LinkedBlockingQueue<Runnable>(),                new ThreadPoolExecutor.DiscardOldestPolicy()) {            // 线程执行之前运行
            @Override
            protected void beforeExecute(Thread t, Runnable r) {
                System.out.println("...............beforeExecute");
            }            // 线程执行之后运行
            @Override
            protected void afterExecute(Runnable r, Throwable t) {
                System.out.println("...............afterExecute");
            }            // 整个线程池停止之后
            protected void terminated() {
                System.out.println("...............thread stop");
            }
        };        for (int i = 1; i <= 10; i++) {
            pool.execute(new ThreadPoolTask(i, along));
        }        for (int i = 1; i <= 10; i++) {
            pool.execute(new ThreadPoolTask(-i, along));
        }
        pool.shutdown();
        Thread.sleep(25000);
        System.out.println(along.get());

    }    public static void main(String[] args) {        try {            new ThreadPool().run();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}class ThreadPoolTask implements Runnable {    private int i = 0;    private AtomicLong along;    ThreadPoolTask(int i, AtomicLong along) {        this.i = i;        this.along = along;
    }    
    @Override
    public void run() {        try {            // 模拟业务逻辑
            Thread.sleep(1000);
            along.addAndGet(i);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName() + "  " + i);
    }
}

我们可以利用这个特性实现在线程池中打印出异常堆栈信息(正常是不会打印出来的),这里就不演示了。

2. 关于Executors提供的四种线程池

Executors 提供了一系列工厂方法用于创先线程池,返回的线程池都实现了 ExecutorService 接口。

public static ExecutorService newFixedThreadPool(int nThreads)创建固定数目线程的线程池。public static ExecutorService newCachedThreadPool()创建一个可缓存的线程池,调用execute将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线 程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。public static ExecutorService newSingleThreadExecutor()创建一个单线程化的Executor。public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

这四种方法都是用的 Executors 中的 ThreadFactory 建立的线程。

newCachedThreadPool()

  • 缓存型池子,先查看池中有没有以前建立的线程,如果有,就 reuse 如果没有,就建一个新的线程加入池中

  • 缓存型池子通常用于执行一些生存期很短的异步型任务 因此在一些面向连接的 daemon 型 SERVER 中用得不多。但对于生存期短的异步任务,它是 Executor 的首选。

  • 能 reuse 的线程,必须是 timeout IDLE 内的池中线程,缺省 timeout 是 60s,超过这个 IDLE 时长,线程实例将被终止及移出池。

newFixedThreadPool(int)

  • newFixedThreadPool 与 cacheThreadPool 差不多,也是能 reuse 就用,但不能随时建新的线程。

  • 其独特之处:任意时间点,最多只能有固定数目的活动线程存在,此时如果有新的线程要建立,只能放在另外的队列中等待,直到当前的线程中某个线程终止直接被移出池子。

  • 和 cacheThreadPool 不同,FixedThreadPool 没有 IDLE 机制(可能也有,但既然文档没提,肯定非常长,类似依赖上层的 TCP 或 UDP IDLE 机制之类的),所以 FixedThreadPool 多数针对一些很稳定很固定的正规并发线程,多用于服务器。

  • 从方法的源代码看,cache池和fixed 池调用的是同一个底层 池,只不过参数不同:

  • fixed 池线程数固定,并且是0秒IDLE(无IDLE)。

  • cache 池线程数支持 0-Integer.MAX_VALUE(显然完全没考虑主机的资源承受能力),60 秒 IDLE 。

newScheduledThreadPool(int)

  • 调度型线程池

  • 这个池子里的线程可以按 schedule 依次 delay 执行,或周期执行

SingleThreadExecutor()

  • 单例线程,任意时间池中只能有一个线程

  • 用的是和 cache 池和 fixed 池相同的底层池,但线程数目是 1-1,0 秒 IDLE(无 IDLE)

一般来说,CachedTheadPool 在程序执行过程中通常会创建与所需数量相同的线程,然后在它回收旧线程时停止创建新线程,因此它是合理的 Executor 的首选,只有当这种方式会引发问题时(比如需要大量长时间面向连接的线程时),才需要考虑用 FixedThreadPool。

----《Thinking in Java》第四版

以上引用自极客学院,总结的太精彩了。

3. Spring中的线程池管理

Spring的TaskExecutor接口等同于java.util.concurrent.Executor接口。 实际上,它存在的主要原因是为了在使用线程池的时候,将对Java 5的依赖抽象出来。 这个接口只有一个方法execute(Runnable task),它根据线程池的语义和配置,来接受一个执行任务。最初创建TaskExecutor是为了在需要时给其他Spring组件提供一个线程池的抽象。例如ApplicationEventMulticaster组件、JMS的 AbstractMessageListenerContainer和对Quartz的整合都使用了TaskExecutor抽象来提供线程池。 当然,如果你的bean需要线程池行为,你也可以使用这个抽象层。

介绍下使用比较多的ThreadPoolTaskExecutor 类,这个实现只能在Java 5以上环境使用(现在应该没有低于1.5的老环境了吧~),它暴露的bean properties可以用来配置一个java.util.concurrent.ThreadPoolExecutor,把它包装到一个TaskExecutor中。

spring中ThreadPoolTaskExecutor最常用方式就是做为BEAN注入到容器中,其暴露的各个属性其实是ThreadPoolExecutor的属性,而且这体现了DI容器的优势:

<bean id="threadPoolTaskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">  
    <property name="corePoolSize" value="2"/>  
    <property name="keepAliveSeconds" value="200"/>  
    <property name="maxPoolSize" value="10"/>  
    <property name="queueCapacity" value="60"/>  </bean>

4. 优化线程池线程数量

线程池的理想大小取决于被提交任务的类型以及所部署系统的特性。在代码中不会固定线程池的大小,而应该通过某种配置机制来来提供,或者根据Runtime.getRuntime().availableProcessors()来动态计算。

如果一台服务器上只部署这一个应用并且只有一个线程池(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1

  • 如果是IO密集型应用,则线程池大小设置为2N+1

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

【黄金公式】最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

一个实际的计算过程(慕课网):

假设值

  • tasks :每秒的任务数,假设为500~1000

  • taskcost:每个任务花费时间,假设为0.1s

  • responsetime:系统允许容忍的最大响应时间,假设为1s

计算

  • corePoolSize = 每秒需要多少个线程处理?

threadcount = tasks/(1/taskcost) =taskstaskcout = (500~1000)0.1 = 50~100 个线程。corePoolSize设置应该大于50

根据8020原则,如果80%的每秒任务数小于800,那么corePoolSize设置为80即可

  • queueCapacity = (coreSizePool/taskcost)*responsetime

计算可得 queueCapacity = 80/0.1*1 = 80。意思是队列里的线程可以等待1s,超过了的需要新开线程来执行

切记不能设置为Integer.MAX_VALUE,这样队列会很大,线程数只会保持在corePoolSize大小,当任务陡增时,不能新开线程来执行,响应时间会随之陡增。

  • maxPoolSize = (max(tasks)- queueCapacity)/(1/taskcost)

计算可得 maxPoolSize = (1000-80)/10 = 92

(最大任务数-队列容量)/每个线程每秒处理能力 = 最大线程数

  • rejectedExecutionHandler:根据具体情况来决定,任务不重要可丢弃,任务重要则要利用一些缓冲机制来处理

  • keepAliveTimeallowCoreThreadTimeout采用默认通常能满足



本文转自 sshpp 51CTO博客,原文链接:http://blog.51cto.com/12902932/1925703,如需转载请自行联系原作者
相关文章
|
12天前
|
Java 调度
Java并发编程:深入理解线程池的原理与实践
【4月更文挑战第6天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将从线程池的基本原理入手,逐步解析其工作过程,以及如何在实际开发中合理使用线程池以提高程序性能。同时,我们还将关注线程池的一些高级特性,如自定义线程工厂、拒绝策略等,以帮助读者更好地掌握线程池的使用技巧。
|
20天前
|
Java 程序员
java线程池讲解面试
java线程池讲解面试
37 1
|
14天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【4月更文挑战第3天】 在Java并发编程中,线程池是一种重要的资源管理工具,它能有效地控制和管理线程的数量,提高系统性能。本文将深入探讨Java线程池的工作原理、应用场景以及优化策略,帮助读者更好地理解和应用线程池。
|
10天前
|
Java
Java 并发编程:深入理解线程池
【4月更文挑战第8天】本文将深入探讨 Java 中的线程池技术,包括其工作原理、优势以及如何使用。线程池是 Java 并发编程的重要工具,它可以有效地管理和控制线程的执行,提高系统性能。通过本文的学习,读者将对线程池有更深入的理解,并能在实际开发中灵活运用。
|
29天前
|
监控 Java
Java并发编程中的线程池优化技巧
在Java并发编程中,线程池扮演着至关重要的角色。本文将深入探讨如何优化Java线程池,从线程池的创建与配置、任务队列的选择、拒绝策略的制定、线程池状态的监控等多个方面进行详细阐述。通过本文的阅读,您将了解到如何合理地利用线程池,提高系统的并发性能,从而更好地应对各种并发场景。
|
10天前
|
Java
Java并发编程:深入理解线程池
【4月更文挑战第7天】在现代软件开发中,多线程编程已经成为一种不可或缺的技术。为了提高程序性能和资源利用率,Java提供了线程池这一强大工具。本文将深入探讨Java线程池的原理、使用方法以及如何根据实际需求定制线程池,帮助读者更好地理解和应用线程池技术。
15 0
|
1天前
|
存储 缓存 监控
Java线程池
Java线程池
11 1
|
27天前
|
Java
Java中线程池的深入理解与实践
【2月更文挑战第30天】本文将详细探讨Java中的线程池,包括其基本原理、应用场景以及如何在实际项目中使用。我们将通过实例代码来演示如何创建和管理线程池,以及如何优化线程池的性能。
|
28天前
|
Java
Java并发编程:线程池的深入理解与实践
【2月更文挑战第29天】在Java并发编程中,线程池是一种重要的技术手段,它可以有效地管理和控制线程,提高系统性能。本文将深入探讨线程池的原理,解析其关键参数,并通过实例演示如何在实际开发中合理使用线程池。
|
29天前
|
Java 开发者
深入理解Java并发编程:线程池的应用与优化
【2月更文挑战第29天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将首先介绍线程池的基本概念和原理,然后详细解析线程池的使用方法和注意事项,最后探讨如何优化线程池的性能。通过本文的学习,你将能够掌握线程池的核心知识,提高你的Java并发编程能力。