CPU调优并发问题

简介:
多核cpu
让指定的程序 在指定的cpu上运行 
看的是进程类型 cpu消耗型 I/O消耗型

多线程并发
一个程序运行 我使用到两个cpu核心 我们可以让改程序以线程方式运行 每
个核心运行一个线程

多核情况下以线程方式运行效果更好一些,单核的话区别就不大了

测试 io消耗型
#!/bin/bash
for ((i=1;i<255;i++))
do
( if ping -c 1 192.168.0.$i &> /dev/null 
then
echo "192.168.0.$i"
fi ) &
done

小括号表示打开一个子进程 &在后台运行

运行一个死循环脚本
top -d 1 -p pid 每秒刷新一次 
f j 添加有一个列 显示最后一次使用的cpu

top -d 0.1 -p pid 每0.1秒刷新一次

tastset -c 0 /a.sh 让ash死循环在 0号cpu上运行



本文转自 维度2018 51CTO博客,原文链接:http://blog.51cto.com/xinsz08/1915894,如需转载请自行联系原作者

相关文章
|
12月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
140 4
|
11月前
|
监控 并行计算 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
在Python编程的征途中,面对日益增长的性能需求,如何构建高效的应用成为了每位开发者必须面对的课题。并发与异步编程作为提升程序性能的两大法宝,在处理IO密集型与CPU密集型任务时展现出了巨大的潜力。今天,我们将深入探讨这些技术的最佳实践,助你打造高效Python应用。
163 0
|
9月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
884 7
|
11月前
|
开发框架 并行计算 .NET
脑洞大开!Python并发与异步编程的哲学思考:IO密集型与CPU密集型任务的智慧选择!
脑洞大开!Python并发与异步编程的哲学思考:IO密集型与CPU密集型任务的智慧选择!
115 1
|
12月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
481 0
|
Linux 开发工具
CPU-IO-网络-内核参数的调优
CPU-IO-网络-内核参数的调优
166 7
|
并行计算 监控 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
【7月更文挑战第16天】Python并发异步提升性能:使用`asyncio`处理IO密集型任务,如网络请求,借助事件循环实现非阻塞;`multiprocessing`模块用于CPU密集型任务,绕过GIL进行并行计算。通过任务类型识别、任务分割、避免共享状态、利用现代库和性能调优,实现高效编程。示例代码展示异步HTTP请求和多进程数据处理。
144 8
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
【7月更文挑战第17天】在数据驱动时代,Python凭借其优雅语法和强大库支持成为并发处理大规模数据的首选。并发与异步编程是关键,包括多线程、多进程和异步IO。对于IO密集型任务,如网络请求,可使用`concurrent.futures`和`asyncio`;CPU密集型任务则推荐多进程,如`multiprocessing`;`asyncio`适用于混合任务,实现等待IO时执行CPU任务。通过这些工具,开发者能有效优化资源,提升系统性能。
218 4
|
分布式计算 并行计算 Java
Python并发风暴来袭!IO密集型与CPU密集型任务并发策略大比拼,你站哪队?
【7月更文挑战第17天】Python并发处理IO密集型(如网络请求)与CPU密集型(如数学计算)任务。IO密集型适合多线程和异步IO,如`ThreadPoolExecutor`进行网页下载;CPU密集型推荐多进程,如`multiprocessing`模块进行并行计算。选择取决于任务类型,理解任务特性是关键,以实现最佳效率。
350 4
|
开发框架 并行计算 .NET
脑洞大开!Python并发与异步编程的哲学思考:IO密集型与CPU密集型任务的智慧选择!
【7月更文挑战第18天】在Python中,异步编程(如`asyncio`)适合处理IO密集型任务,通过非阻塞操作提高响应性,例如使用`aiohttp`进行异步HTTP请求。而对于CPU密集型任务,由于GIL的存在,多进程(`multiprocessing`)能实现并行计算,如使用进程池进行大量计算。明智选择并发模型是性能优化的关键,体现了对任务特性和编程哲学的深刻理解。
140 2