阿里云SLS日志服务

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

1.linux安装logtail.sh

使用安骑士命令通道下发安装Agent存在用户隐私方面风险,因此日志服务不再提供Logtail的自动安装功能,请参照本文手动安装Logtail

支持Linux(64位)和Windows(32位、64位)操作系统

wget http://logtail-release.oss-cn-hangzhou-internal.aliyuncs.com/linux64/logtail.sh 

chmod 755 logtail.sh

以日志服务北京Region,ECS经典环境为例,管理员权限在shell下执行命令:

sh logtail.sh install cn_beijing

卸载Logtail:

sh logtail.sh uninstall


2.windows安装logtail.sh

http://logtail-release.oss-cn-hangzhou-internal.aliyuncs.com/windows/logtail-cn_qingdao-win.zip

以北京Region的日志服务用户为例:下载logtail-cn_beijing-win.zip到D盘并解压缩到logtail-cn_beijing-win目录。 运行cmd.exe进入logtail-cn_beijing-win目录执行:

D:\logtail-cn_beijing-win>logtail.bat install

卸载Logtail:

运行cmd.exe进入logtail-cn_beijing-win目录执行:

D:\logtail-cn_beijing-win>logtail.bat uninstall


3.阿里云界面上配置如下:

wKioL1aV_uHgKFtKAAA-sosUOCs846.png

wKiom1aV_rGD8M7kAAA0FR6QOW8564.png

wKiom1aV_rGCbp9FAABk3SvrSrY346.png

wKiom1aV_rLTyCjUAABUf4uMsfI393.png

wKiom1aV_rKBTeGOAAA3EtA6-wE010.png

wKiom1aV_rPhf1SFAAAiif--ewc654.png

wKiom1aV_rOQSlBsAAAiZTyrnAg683.png

wKiom1aV_rTD7_psAACFcpy3zJc195.png


参考:

详情见阿里云(日志服务)文档


本文转自 guowang327 51CTO博客,原文链接:http://blog.51cto.com/guowang327/1734587,如需转载请自行联系原作者

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
6月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
802 54
|
6月前
|
自然语言处理 监控 安全
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
阿里云可观测官方发布了Observable MCP Server,提供了一系列访问阿里云可观测各产品的工具能力,包含阿里云日志服务SLS、阿里云应用实时监控服务ARMS等,支持用户通过自然语言形式查询
843 0
阿里云发布可观测MCP!支持自然语言查询和分析多模态日志
|
8月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
362 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
8月前
|
监控 Java 应用服务中间件
Tomcat log日志解析
理解和解析Tomcat日志文件对于诊断和解决Web应用中的问题至关重要。通过分析 `catalina.out`、`localhost.log`、`localhost_access_log.*.txt`、`manager.log`和 `host-manager.log`等日志文件,可以快速定位和解决问题,确保Tomcat服务器的稳定运行。掌握这些日志解析技巧,可以显著提高运维和开发效率。
833 13
|
8月前
|
域名解析 应用服务中间件 网络安全
阿里云个人博客外网访问中断应急指南:从安全组到日志的七步排查法
1. 检查安全组配置:确认阿里云安全组已开放HTTP/HTTPS端口,添加规则允许目标端口(如80/443),授权对象设为`0.0.0.0/0`。 2. 本地防火墙设置:确保服务器防火墙未阻止外部流量,Windows启用入站规则,Linux检查iptables或临时关闭防火墙测试。 3. 验证Web服务状态:检查Apache/Nginx/IIS是否运行并监听所有IP,使用命令行工具确认监听状态。 4. 测试网络连通性:使用外部工具和内网工具测试服务器端口是否开放,排除本地可访问但外网不可的问题。 5. 排查DNS解析:确认域名A记录指向正确公网IP,使用`ping/nslookup`验证解析正
327 2
|
8月前
|
SQL 存储 关系型数据库
简单聊聊MySQL的三大日志(Redo Log、Binlog和Undo Log)各有什么区别
在MySQL数据库管理中,理解Redo Log(重做日志)、Binlog(二进制日志)和Undo Log(回滚日志)至关重要。Redo Log确保数据持久性和崩溃恢复;Binlog用于主从复制和数据恢复,记录逻辑操作;Undo Log支持事务的原子性和隔离性,实现回滚与MVCC。三者协同工作,保障事务ACID特性。文章还详细解析了日志写入流程及可能的异常情况,帮助深入理解数据库日志机制。
1065 0
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
3607 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
11月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
340 9
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
1227 3