pythopn 迭代器

简介:
我们已经知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型,如list、tuple、dict、set、str等;
一类是generator,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为  可迭代对象  :Iterable。
 可以使用isinstance()判断一个对象是否是Iterable (可迭代对象) 对象:

>>> l=[1,2]
>>> l1=isinstance(l,list)    #判断相应字符类型  是返回True

>>> from collections import Iterable
>>> l=isinstance([], Iterable)
>>> print(l)            # True
>>> t=isinstance({}, Iterable)
>>> print(t)            # True
>>> d=isinstance('abc', Iterable)
>>> print(d)            # True
>>> g=isinstance((x for x in range(10)), Iterable)
>>> print(g)            # True
>>> s=isinstance(100, Iterable)
>>> print(s)            # False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,
直到最后抛出StopIteration错误表示无法继续返回下一个值了。
可以被next()函数调用并不断返回下一个值的对象称为     迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator(迭代器)对象:
>>> from collections import Iterator
>>> g=isinstance((x for x in range(10)), Iterator)
>>> print(g)           #True
>>> l=isinstance([], Iterator)
>>> print(l)           #False
>>> d=isinstance({}, Iterator)
>>> print(d)           #False
>>> s=isinstance('abc', Iterator)
>>> print(s)           #False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
把list、dict、str等Iterable变成Iterator可以使用iter()函数:
>>> from collections import Iterator
>>> l=isinstance(iter([]), Iterator)
>>> print(l)             #True

>>> from collections import Iterator
>>> s= isinstance(iter('abc'), Iterator)
>>> print(s)             #True

 为什么list、dict、str等数据类型不是Iterator?
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,
直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,
但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,
所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的![]

在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、
列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,
我将用下图将这些概念以及它们之间的关系捋清楚

pythopn 迭代器" >









本文转自lb沫51CTO博客,原文链接:http://blog.51cto.com/13562606/2060450,如需转载请自行联系原作者

相关文章
|
7天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1167 3
|
6天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
854 12
|
16天前
|
人工智能 运维 安全
|
5天前
|
机器学习/深度学习 物联网
Wan2.2再次开源数字人:Animate-14B!一键实现电影角色替换和动作驱动
今天,通义万相的视频生成模型又又又开源了!Wan2.2系列模型家族新增数字人成员Wan2.2-Animate-14B。
445 10
|
7天前
|
弹性计算 Kubernetes jenkins
如何在 ECS/EKS 集群中有效使用 Jenkins
本文探讨了如何将 Jenkins 与 AWS ECS 和 EKS 集群集成,以构建高效、灵活且具备自动扩缩容能力的 CI/CD 流水线,提升软件交付效率并优化资源成本。
329 0
|
14天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!