一网打尽当下NoSQL类型、适用场景及使用公司

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

在过去几年,关系型数据库一直是数据持久化的唯一选择,数据工作者考虑的也只是在这些传统数据库中做筛选,比如SQL Server、Oracle或者是MySQL。甚至是做一些默认的选择,比如使用.NET的一般会选择SQL    Server;使用Java的可能会偏向Oracle,Ruby是MySQL,Python则是PostgreSQL或MySQL等等。

原因很简单:过去很长一段时间内,关系数据库的健壮性已经在多数应用程序中得到证实。我们可以使用这些传统数据库良好的控制并发操作、事务等等。然而如果传统的关系型数据库一直这么可靠,那么还有NoSQL什么事?NoSQL之所以生存并得到发展,是因为它做到了传统关系型数据库做不到的事!

关系型数据库中存在的问题

Impedance Mismatch

51ef72cd8622f.jpg         

我们使用Python、Ruby、Java、.Net等语言编写应用程序,这些语言有一个共同的特性——面向对象。但是我们使用MySQL、PostgreSQL、Oracle以及SQL    Server,这些数据库同样有一个共同的特性——关系型数据库。这里就牵扯到了“Impedance Mismatch”这个术语:存储结构是面向对象的,但是数据库却是关系的,所以在每次存储或者查询数据时,我们都需要做转换。类似Hibernate、Entity    Framework这样的ORM框架确实可以简化这个过程,但是在对查询有高性能需求时,这些ORM框架就捉襟见肘了。

应用程序规模的变大

网络应用程序的规模日渐变大,我们需要储存更多的数据、服务更多的用户以及需求更多的计算能力。为了应对这种情形,我们需要不停的扩展。扩展分为两类:一种是纵向扩展,即购买更好的机器,更多的磁盘、更多的内存等等;另一种是横向扩展,即购买更多的机器组成集群。在巨大的规模下,纵向扩展发挥的作用并不是很大。首先单机器性能提升需要巨额的开销并且有着性能的上限,在Google和Facebook这种规模下,永远不可能使用一台机器支撑所有的负载。鉴于这种情况,我们需要新的数据库,因为关系数据库并不能很好的运行在集群上。不错你也可能会去搭建关系数据库集群,但是他们使用的是共享存储,这并不是我们想要的类型。于是就有了以Google、Facebook、Amazon这些试图处理更多传输所引领的NoSQL纪元。

NoSQL纪元

当下已经存在很多的NoSQL数据库,比如MongoDB、Redis、Riak、HBase、Cassandra等等。每一个都拥有以下几个特性中的一个:


  • 不再使用SQL语言,比如MongoDB、Cassandra就有自己的查询语言

  • 通常是开源项目

  • 为集群运行而生

  • 弱结构化——不会严格的限制数据结构类型


NoSQL数据库的类型

NoSQL可以大体上分为4个种类:Key-value、Document-Oriented、Column-Family Databases以及     Graph-Oriented Databases。下面就一览这些类型的特性:

一、 键值(Key-Value)数据库

键值数据库就像在传统语言中使用的哈希表。你可以通过key来添加、查询或者删除数据,鉴于使用主键访问,所以会获得不错的性能及扩展性。

产品:Riak、Redis、Memcached、Amazon’s Dynamo、Project Voldemort

有谁在使用:GitHub (Riak)、BestBuy (Riak)、Twitter (Redis和Memcached)、StackOverFlow     (Redis)、 Instagram (Redis)、Youtube (Memcached)、Wikipedia(Memcached)

适用的场景

储存用户信息,比如会话、配置文件、参数、购物车等等。这些信息一般都和ID(键)挂钩,这种情景下键值数据库是个很好的选择。

不适用场景

1. 取代通过键查询,而是通过值来查询。Key-Value数据库中根本没有通过值查询的途径。

2. 需要储存数据之间的关系。在Key-Value数据库中不能通过两个或以上的键来关联数据。

3. 事务的支持。在Key-Value数据库中故障产生时不可以进行回滚。

二、 面向文档(Document-Oriented)数据库

面向文档数据库会将数据以文档的形式储存。每个文档都是自包含的数据单元,是一系列数据项的集合。每个数据项都有一个名称与对应的值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。数据存储的最小单位是文档,同一个表中存储的文档属性可以是不同的,数据可以使用XML、JSON或者JSONB等多种形式存储。

产品:MongoDB、CouchDB、RavenDB

有谁在使用:SAP (MongoDB)、Codecademy (MongoDB)、Foursquare (MongoDB)、NBC    News (RavenDB)

适用的场景

1. 日志。企业环境下,每个应用程序都有不同的日志信息。Document-Oriented数据库并没有固定的模式,所以我们可以使用它储存不同的信息。

2. 分析。鉴于它的弱模式结构,不改变模式下就可以储存不同的度量方法及添加新的度量。

不适用场景

在不同的文档上添加事务。Document-Oriented数据库并不支持文档间的事务,如果对这方面有需求则不应该选用这个解决方案。

三、 列存储(Wide Column Store/Column-Family)数据库

列存储数据库将数据储存在列族(column family)中,一个列族存储经常被一起查询的相关数据。举个例子,如果我们有一个Person类,我们通常会一起查询他们的姓名和年龄而不是薪资。这种情况下,姓名和年龄就会被放入一个列族中,而薪资则在另一个列族中。

产品:Cassandra、HBase

有谁在使用:Ebay (Cassandra)、Instagram (Cassandra)、NASA (Cassandra)、Twitter     (Cassandra and HBase)、Facebook (HBase)、Yahoo!(HBase)

适用的场景

1. 日志。因为我们可以将数据储存在不同的列中,每个应用程序可以将信息写入自己的列族中。

2. 博客平台。我们储存每个信息到不同的列族中。举个例子,标签可以储存在一个,类别可以在一个,而文章则在另一个。

不适用场景

1. 如果我们需要ACID事务。Vassandra就不支持事务。

2. 原型设计。如果我们分析Cassandra的数据结构,我们就会发现结构是基于我们期望的数据查询方式而定。在模型设计之初,我们根本不可能去预测它的查询方式,而一旦查询方式改变,我们就必须重新设计列族。

四、 图(Graph-Oriented)数据库

图数据库允许我们将数据以图的方式储存。实体会被作为顶点,而实体之间的关系则会被作为边。比如我们有三个实体,Steve Jobs、Apple和Next,则会有两个“Founded    by”的边将Apple和Next连接到Steve Jobs。

产品:Neo4J、Infinite Graph、OrientDB

有谁在使用:Adobe (Neo4J)、Cisco (Neo4J)、T-Mobile (Neo4J)

适用的场景

1. 在一些关系性强的数据中

2. 推荐引擎。如果我们将数据以图的形式表现,那么将会非常有益于推荐的制定

不适用场景

不适合的数据模型。图数据库的适用范围很小,因为很少有操作涉及到整个图。

原文链接:     NoSQL Databases, why we should use, and which one we should choose (编译/仲浩    审校/周小璐)













本文转自ljianbing51CTO博客,原文链接:http://blog.51cto.com/ljianbing/1621552 ,如需转载请自行联系原作者




相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 监控 NoSQL
九大核心NoSQL数据库及使用场景详解
【10月更文挑战第6天】在当今大数据与云计算飞速发展的时代,NoSQL数据库以其灵活的数据模型、可扩展性和高性能,成为了众多应用场景下的首选。本文将为您详细介绍九大核心NoSQL数据库及其典型使用场景,帮助您在工作和学习中更好地选择和应用。
68 3
|
3月前
|
NoSQL 关系型数据库 MySQL
微服务架构下的数据库选择:MySQL、PostgreSQL 还是 NoSQL?
在微服务架构中,数据库的选择至关重要。不同类型的数据库适用于不同的需求和场景。在本文章中,我们将深入探讨传统的关系型数据库(如 MySQL 和 PostgreSQL)与现代 NoSQL 数据库的优劣势,并分析在微服务架构下的最佳实践。
|
21天前
|
存储 缓存 NoSQL
常见的 NoSQL 数据库有哪些?
常见的 NoSQL 数据库有哪些?
29 2
|
2月前
|
存储 SQL JSON
介绍一下RDBMS和NoSQL数据库之间的区别
【10月更文挑战第21天】介绍一下RDBMS和NoSQL数据库之间的区别
72 2
|
2月前
|
存储 SQL NoSQL
数据库技术深度探索:从关系型到NoSQL的演变
【10月更文挑战第21天】数据库技术深度探索:从关系型到NoSQL的演变
51 1
|
2月前
|
存储 NoSQL 搜索推荐
nosql
【10月更文挑战第14天】nosql
25 2
|
2月前
|
存储 移动开发 数据库
HTML5 Web IndexedDB 数据库常用数据存储类型
IndexedDB 支持多种数据存储类型,满足复杂数据结构的存储需求。它包括基本数据类型(如 Number、String、Boolean、Date)、对象(简单和嵌套对象)、数组、Blob(用于二进制数据如图像和视频)、ArrayBuffer 和 Typed Arrays(处理二进制数据)、结构化克隆(支持 Map 和 Set 等复杂对象),以及 JSON 数据。尽管不直接支持非序列化数据(如函数和 DOM 节点),但可以通过转换实现存储。开发者应根据具体需求选择合适的数据类型,以优化性能和使用体验。
|
2月前
|
NoSQL MongoDB 数据库
MongoDB是一个NoSQL数据库,有着多种不同的命令和操作。以下是一些常见的MongoDB命令:
一些常用的MongoDB命令,如数据库和集合的管理、数据的插入、查询、更新、删除以及聚合操作等。
25 1
|
2月前
|
NoSQL 前端开发 MongoDB
前端的全栈之路Meteor篇(三):运行在浏览器端的NoSQL数据库副本-MiniMongo介绍及其前后端数据实时同步示例
MiniMongo 是 Meteor 框架中的客户端数据库组件,模拟了 MongoDB 的核心功能,允许前端开发者使用类似 MongoDB 的 API 进行数据操作。通过 Meteor 的数据同步机制,MiniMongo 与服务器端的 MongoDB 实现实时数据同步,确保数据一致性,支持发布/订阅模型和响应式数据源,适用于实时聊天、项目管理和协作工具等应用场景。
|
2月前
|
存储 SQL 分布式计算
NoSQL 简介
10月更文挑战第10天
36 0