Storm集群中运行的各种组件及其并行

简介: 一、Storm中运行的组件      我们知道,Storm的强大之处就是可以很容易地在集群中横向拓展它的计算能力,它会把整个运算过程分割成多个独立的tasks在集群中进行并行计算。在Storm中,一个task就是运行在集群中的一个Spout或Bolt实例。      为了方便理解Storm如何并行处理我们分给它的任务,这里我先介绍一下在集群中涉及到Topology的四种组件:

一、Storm中运行的组件

     我们知道,Storm的强大之处就是可以很容易地在集群中横向拓展它的计算能力,它会把整个运算过程分割成多个独立的tasks在集群中进行并行计算。在Storm中,一个task就是运行在集群中的一个Spout或Bolt实例。
     为了方便理解Storm如何并行处理我们分给它的任务,这里我先介绍一下在集群中涉及到Topology的四种组件:
  • Nodes(machines):集群中的节点,就是这些节点一起工作来执行Topology。
  • Workers(JVMs):一个worker就是一个独立的JVM进程。每个节点都可以通过配置运行一个或多个workers,一个Topology可以指定由多少个workers来执行。     
  • Executors(threads):一个worker JVM中运行的线程。一个worker进程可以执行一个或多个executor线程。一个Executor可以运行多个tasks,Storm默认一个每个executor分配一个task。
  • Tasks(bolt/spout实例):Tasks就是spouts和bolts的实例,它具体是被executor线程处理的。

二、Storm中的并行(以WordCountTopology为例)

     我们可以通过配置来调整我们work的并行数量,如果我们不进行设置, Storm默认大部分过程的并行数量为1。假设我们对WordCountTopology不单独进行配置,那么我们的Topology执行情况如下图所示:
      我们的一个节点会为我们的Topology分配一个worker,这个worker会为每个Task启动一个Executor线程。

2.1 为Topology增加workers

     一种最简单的提高Topology运算能力的途径就是为我们的Topology增加workers。Storm为我们提供了两种途径来增加workers:通过配置文件或通过程序设置。
     通过Config对象来配置workers:

           Config config = new Config();
     config.setNumWorkers(2);

注意:在LocalMode下不管设置几个workers,最终都只有一个worker JVM进程。

2.2 配置executors和tasks

     前面我们已经说过,Storm会为每个Topology组件创建一个task,而默认一个executor只处理一个task。task是spouts和bolts的实例,一个executor线程可由处理多个tasks,tasks是真正处理具体数据的一个过程,我们在代码中写的spout和bolt可以看做是由集群中分布的tasks来执行的。Task的数量在整个topology运行期间一般是不变的,但是组件的Executors是有可能发生变化的。这也就意味着:threads<=tasks。

2.2.1 设置executor(thread)数量

     通过设置parallelism hint来指定一个组件的executors。
  • 描述:每个组件产生多少个Executor
  • 配置选项:?
  • 在代码中配置:
     下面我们指定SentenseSpout的并行数量为2,则这个Spout组件会有两个executors,每个executor分配一个task,其Topology的运行情况如下图所示:
      builder.setSpout(SENTENCE_SPOUT_ID, spout,  2 );

2.2.2 设置task的数量

     通过setNumTasks()方法来指定一个组件的tasks数量。
     下面我们为 SplitSentenceBolt 设置4个tasks和2个executors,这样的话每个executor线程将被分配执行4/2=2个tasks,然后再为WordCountBolt分配4个task,每个task由一个executor负责执行。其Topology如下图所示:

      builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2).setNumTasks(4).shuffleGrouping(SENTENCE_SPOUT_ID);
     builder.setBolt(COUNT_BOLT_ID, countBolt, 4).fieldsGrouping(SPLIT_BOLT_ID, newFields("word"));

    如果一开始分配2个workers,则Topology的运行情况如下图所示:
 

三、一个topology的例子

     下面这幅图展示了一个实际topology的全景,topology由三个组件组成,一个Spout:BlueSpout,两个Bolt:GreenBolt、YellowBolt。

     如上图,我们配置了两个worker进程,两个Spout线程,两个GreenBolt线程和六个YellowBolt线程,那么分布到集群中的话,每个工作进程都会有5个executor线程。下面看一下具体代码:

      java Config conf = new Config();
     conf.setNumWorkers(2); // use two worker processes

     topologyBuilder.setSpout(“blue-spout”, new BlueSpout(), 2); // set parallelism hint to 2

     topologyBuilder.setBolt(“green-bolt”, new GreenBolt(), 2) .setNumTasks(4) .shuffleGrouping(“blue-spout”);

     topologyBuilder.setBolt(“yellow-bolt”, new YellowBolt(), 6) .shuffleGrouping(“green-bolt”);

     StormSubmitter.submitTopology( “mytopology”, conf, topologyBuilder.createTopology() );

     当然,Storm中也有一个参数来控制topology的并行数量:

四、如何改变一个运行topology中的Parallelism

     Storm中一个很好的特性就是可以在topology运行期间动态调制worker进程或Executor线程的数量而不需要重启topology。这种机制被称作rebalancing。
     我们有两种方式来均衡一个topology:
  1. 通过Storm web UI来均衡
  2. 通过CLI tool storm 来均衡  
     下面就是一个CLI tool应用的例子:

 # Reconfigure the topology “mytopology” to use 5 worker processes, # the spout “blue-spout” to use 3 executors and # the bolt      “yellow-bolt” to use 10 executors.

      $ storm rebalance mytopology -n 5 -e blue-spout=3 -e yellow-bolt=10 















目录
相关文章
|
流计算
Flink CDC程序都需要打包到flink集群去执行来保证高可用
Flink CDC程序都需要打包到flink集群去执行来保证高可用吗?
242 2
|
7月前
|
消息中间件 资源调度 Java
实时计算 Flink版产品使用合集之部署yarn模式,怎么实现峰谷动态并行度扩容缩容
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
83 1
|
4月前
|
DataWorks 算法 调度
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
B端算法实践问题之配置脚本以支持blink批处理作业的调度如何解决
54 1
|
3月前
|
分布式计算 资源调度 Hadoop
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
78 0
|
流计算
110 Storm集群的进程及日志熟悉
110 Storm集群的进程及日志熟悉
75 0
|
资源调度 分布式计算 调度
Fink--3、Flink运行时架构(并行度、算子链、任务槽、作业提交流程)
Fink--3、Flink运行时架构(并行度、算子链、任务槽、作业提交流程)
|
SQL 运维 分布式计算
Flink 批作业的运行时自适应执行管控
阿里云高级技术专家朱翥(长耕),在 FFA 核心技术专场的分享。本篇内容是关于在过去的一年中,Apache Flink 对运行时的作业执行管控进行的一些改进。
Flink 批作业的运行时自适应执行管控
|
分布式计算 大数据 数据处理
深入 RDD 问题-如何运行在集群中 | 学习笔记
快速学习 深入 RDD 问题-如何运行在集群中
深入 RDD 问题-如何运行在集群中 | 学习笔记
|
Java 调度 流计算
Flink运行时涉及到的进程
Flink运行时涉及到的进程
375 0