优化数据库大幅度提高Oracle的性能

简介:
几个简单的步骤大幅提高 Oracle性能--我优化数据库的三板斧。
数据库优化的讨论可以说是一个永恒的主题。资深的 Oracle优化人员通常会要求提出性能问题的人对数据库做一个statspack,贴出数据库配置等等。还有的人认为要抓出执行最慢的语句来进行优化。但实际情况是,提出疑问的人很可能根本不懂执行计划,更不要说statspack了。而我认为,数据库优化,应该首先从大的方面考虑:网络、服务器硬件配置、操作系统配置、Oracle服务器配置、数据结构组织、然后才是具体的调整。实际上网络、硬件等往往无法决定更换,应用程序一般也无法修改,因此应该着重从数据库配置、数据结构上来下手,首先让数据库有一个良好的配置,然后再考虑具体优化某些过慢的语句。我在给我的用户系统进行优化的过程中,总结了一些基本的,简单易行的办法来优化数据库,算是我的三板斧,呵呵。不过请注意,这些不一定普遍使用,甚至有的会有副作用,但是对OLTP系统、基于成本的数据库往往行之有效,不妨试试。(注:附件是Burleson写的用来报告数据库性能等信息的脚本,本文用到)
一.设置合适的SGA
常常有人抱怨服务器硬件很好,但是Oracle就是很慢。很可能是内存分配不合理造成的。(1)假设内存有512M,这通常是小型应用。建议Oracle的SGA大约240M,其中:共享池(SHARED_POOL_SIZE)可以设置60M到80M,根据实际的用户数、查询等来定。数据块缓冲区可以大致分配120M-150M,8i下需要设置DB_BLOCK_BUFFERS,DB_BLOCK_BUFFER*DB_BLOCK_SIZE等于数据块缓冲区大小。9i 下的数据缓冲区可以用db_cache_size来直接分配。
(2)假设内存有1G,Oracle 的SGA可以考虑分配500M:共享池分配100M到150M,数据缓冲区分配300M到400M。
(3)内存2G,SGA可以考虑分配1.2G,共享池300M到500M,剩下的给数据块缓冲区。
(4)内存2G以上:共享池300M到500M就足够啦,再多也没有太大帮助;(Biti_rainy有专述)数据缓冲区是尽可能的大,但是一定要注意两个问题:一是要给操作系统和其他应用留够内存,二是对于32位的操作系统,Oracle的SGA有1.75G的限制。有的32位操作系统上可以突破这个限制,方法还请看Biti的大作吧。
二.分析表和索引,更改优化模式
Oracle默认优化模式是CHOOSE,在这种情况下,如果表没有经过分析,经常导致查询使用全表扫描,而不使用索引。这通常导致磁盘I/O太多,而导致查询很慢。如果没有使用执行计划稳定性,则应该把表和索引都分析一下,这样可能直接会使查询速度大幅提升。分析表命令可以用ANALYZE TABLE 分析索引可以用ANALYZE INDEX命令。对于少于100万的表,可以考虑分析整个表,对于很大的表,可以按百分比来分析,但是百分比不能过低,否则生成的统计信息可能不准确。可以通过DBA_TABLES的LAST_ANALYZED列来查看表是否经过分析或分析时间,索引可以通过DBA_INDEXES的LAST_ANALYZED列。
下面通过例子来说明分析前后的速度对比。(表CASE_GA_AJZLZ大约有35万数据,有主键)首先在SQLPLUS中打开自动查询执行计划功能。(第一次要执行\RDBMS\ADMIN\utlxplan.sql来创建PLAN_TABLE这个表)
 SQL>  SET AUTOTRACE  ON 
SQL> SET TIMING  ON
通过SET AUTOTRACE ON 来查看语句的执行计划,通过SET TIMING ON 来查看语句运行时间。
 SQL>  select  count(*)  from CASE_GA_AJZLZ; 
COUNT(*) 
---------- 
346639 
 
已用时间: 00: 00: 21.38 
 
Execution  Plan 
SELECT STATEMENT Optimizer=CHOOSE 
1 0 SORT (AGGREGATE) 
2 1  TABLE ACCESS ( FULLOF  'CASE_GA_AJZLZ' 
……………………
请注意上面分析中的TABLE ACCESS(FULL),这说明该语句执行了全表扫描。而且查询使用了21.38秒。这时表还没有经过分析。下面我们来对该表进行分析:
SQL> analyze  table CASE_GA_AJZLZ  compute  statistics;
表已分析。已用时间: 00: 05: 357.63。然后再来查询:
SQL>  select  count(*)  from CASE_GA_AJZLZ; 
COUNT(*) 
---------- 
346639 
 
已用时间: 00: 00: 00.71 
 
Execution  Plan 
 
SELECT STATEMENT Optimizer=FIRST_ROWS (Cost=351 Card=1) 
1 0 SORT (AGGREGATE) 
2 1  INDEX (FAST  FULL SCAN)  OF  'PK_AJZLZ' ( UNIQUE) (Cost=351 
Card=346351) 
…………………………
请注意,这次时间仅仅用了0.71秒!这要归功于INDEX(FAST FULL SCAN)。通过分析表,查询使用了PK_AJZLZ索引,磁盘I/O大幅减少,速度也大幅提升!下面的实用语句可以
用来生成分析某个用户的所有表和索引,假设用户是GAXZUSR:
SQL>  set pagesize 0 
SQL> spool d:\analyze_tables.sql; 
SQL>  select  'analyze table '||owner|| '.'||table_name||'    
compute  statistics; ' from dba_tables where owner='GAXZUSR'; 
SQL> spool  off 
SQL> spool spool d:\analyze_indexes.sql; 
SQL>  select  'analyze index '||owner|| '.'||index_name||'    
compute  statistics; ' from dba_indexes where owner='GAXZUSR'; 
SQL> spool  off 
SQL> @d:\analyze_tables.sql 
SQL> @d:\analyze_indexes.sql
解释:上面的语句生成了两个sql文件,分别分析全部的GAXZUSR的表和索引。如果需要按照百分比来分析表,可以修改一下脚本。通过上面的步骤,我们就完成了对表和索引的分析,可以测试一下速度的改进啦。建议定期运行上面的语句,尤其是数据经过大量更新。
当然,也可以通过dbms_stats来分析表和索引,更方便一些。但是我仍然习惯上面的方法,因为成功与否会直接提示出来。
 
另外,我们可以将优化模式进行修改。optimizer_mode值可以是RULE、CHOOSE、FIRST_ROWS和ALL_ROWS。对于OLTP系统,可以改成FIRST_ROWS,来要求查询尽快返回结果。这样即使不用分析,在一般情况下也可以提高查询性能。但是表和索引经过分析后有助于找到最合适的执行计划。
三.设置cursor_sharing=FORCE 或SIMILAR
这种方法是8i才开始有的,oracle805不支持。通过设置该参数,可以强制共享只有文字不同的语句解释计划。例如下面两条语句可以共享:
SQL>  SELECT *  FROM MYTABLE  WHERE  NAME= 'tom' 
SQL>  SELECT *  FROM MYTABLE  WHERE  NAME= 'turner'
这个方法可以大幅降低缓冲区利用率低的问题,避免语句重新解释。通过这个功能,可以很大程度上解决硬解析带来的性能下降的问题。个人感觉可根据系统的实际情况,决定是否将该参数改成FORCE。该参数默认是exact。不过一定要注意,修改之前,必须先给ORACLE打补丁,否则改之后oracle会占用100%的CPU,无法使用。对于ORACLE9i,可以设置成SIMILAR,这个设置综合了FORCE和EXACT的优点。不过请慎用这个功能,这个参数也可能带来很大的负面影响!
四.将常用的小表、索引钉在数据缓存KEEP池中
内存上数据读取速度远远比硬盘中读取要快,据称,内存中数据读的速度是硬盘的14000倍!如果资源比较丰富,把常用的小的、而且经常进行全表扫描的表给钉内存中,当然是在好不过了。可以简单的通过ALTER TABLE tablename CACHE来实现,在ORACLE8i之后可以使用ALTER TABLE table STORAGE(BUFFER_POOL KEEP)。一般来说,可以考虑把200数据块之内的表放在keep池中,当然要根据内存大小等因素来定。关于如何查出那些表或索引符合条件,可以使用本文提供的access.sql和access_report.sql。这两个脚本是著名的Oracle专家 Burleson写的,你也可以在读懂了情况下根据实际情况调整一下脚本。对于索引,可以通过ALTER INDEX indexname STORAGE(BUFFER_POOL KEEP)来钉在KEEP池中。
将表定在KEEP池中需要做一些准备工作。对于ORACLE9i 需要设置DB_KEEP_CACHE_SIZE,对于8i,需要设置buffer_pool_keep。在8i中,还要修改db_block_lru_latches,该参数默认是1,无法使用buffer_pool_keep。该参数应该比2*3*CPU数量少,但是要大于1,才能设置DB_KEEP_CACHE_BUFFER。buffer_pool_keep从db_block_buffers中分配,因此也要小于db_block_buffers。设置好这些参数后,就可以把常用对象永久钉在内存里。
五.设置optimizer_max_permutations
对于多表连接查询,如果采用基于成本优化(CBO),ORACLE会计算出很多种运行方案, 
从中选择出最优方案。这个参数就是设置oracle究竟从多少种方案来选择最优。如果设置太大,那么计算最优方案过程也是时间比较长的。Oracle805和8i默认是80000,8建议改成2000。对于9i,已经默认是2000了。
六.调整排序参数
(1) SORT_AREA_SIZE:默认的用来排序的SORT_AREA_SIZE大小是32K,通常显得有点小,一般可以考虑设置成1M(1048576)。这个参数不能设置过大,因为每个连接都要分配同样的排序内存。
(2) SORT_MULTIBLOCK_READ_COUNT:增大这个参数可以提高临时表空间排序性能,该参数默认是2,可以改成32来对比一下排序查询时间变化。注意,这个参数的最大值与平台有关系。









本文转自 牛海彬 51CTO博客,原文链接:http://blog.51cto.com/newhappy/136973,如需转载请自行联系原作者
目录
相关文章
|
17天前
|
Cloud Native 关系型数据库 分布式数据库
世界第一!阿里云PolarDB刷新全球数据库性能及性价比记录
世界第一!阿里云PolarDB刷新全球数据库性能及性价比记录
|
6天前
|
Oracle 关系型数据库 网络安全
崖山异构数据库迁移利器YMP初体验-Oracle迁移YashanDB
文章是作者小草对崖山异构数据库迁移利器 YMP 的初体验分享,包括背景、YMP 简介、体验环境说明、YMP 部署(含安装前准备、安装、卸载、启动与停止)、数据迁移及遇到的问题与解决过程。重点介绍了 YMP 功能、部署的诸多细节和数据迁移流程,还提到了安装和迁移中遇到的问题及解决办法。
|
17天前
|
关系型数据库 数据库 数据安全/隐私保护
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
|
20天前
|
数据库
【YashanDB 知识库】误配置 SYSTEM 级别的 STATISTICS_LEVEL 参数为 ALL 导致数据库性能下降
**标题:误配置 SYSTEM 级别的 STATISTICS_LEVEL 参数为 ALL 导致数据库性能下降** **简介:** 数据库性能骤降至正常水平的百分之一,主要表现为大量 free buffer wait 等待事件。原因是系统级别 STATISTICS_LEVEL 被误设为 ALL。解决方法是将其恢复为默认值 TYPICAL,执行命令:`ALTER SYSTEM SET statistics_level='TYPICAL' SCOPE=BOTH;` 以恢复正常性能。
|
18天前
|
Cloud Native 关系型数据库 分布式数据库
刷新世界纪录!阿里云登顶全球数据库性能及性价比排行榜
阿里云PolarDB云原生数据库在TPC-C测试中登顶全球性能及性价比排行榜。此次突破展示了PolarDB在单核性能、横向扩展及软硬件结合上的创新,标志着中国基础软件的重大成就。
|
16天前
|
Cloud Native 关系型数据库 分布式数据库
世界第一!阿里云PolarDB刷新全球数据库性能及性价比记录
世界第一!阿里云PolarDB刷新全球数据库性能及性价比记录
|
18天前
|
Cloud Native 关系型数据库 分布式数据库
世界第一!阿里云PolarDB登顶全球数据库性能及性价比排行榜!
2月26日,阿里云PolarDB在2025开发者大会上登顶全球数据库性能及性价比排行榜。此次突破标志着中国基础软件取得里程碑成就,PolarDB凭借创新的云原生架构,成功应对全球最大规模并发交易峰值,在性能、可扩展性等方面领先全球。
|
2月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
524 0
|
2月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
1月前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
176 42

热门文章

最新文章

推荐镜像

更多