softlockup检测(watchdog)原理(用于检测系统调度是否正常)

简介:

softlockup(watchdog)用于检测系统调度是否正常,即软锁的情况,当发生softlockup时,内核不能调度,但还能响应中断,对用户的表现可能为:能ping通,但无法登陆系统,无法进行正常操作。
其基本原理为:为每个CPU启动一个内核线程(watchdog/x),此线程为优先级最高的实时线程,在该线程得到调度时,会更新相应的计数(时间戳),同时会启动定时器,当定时器到期时检查相应的时间戳,如果超过指定时间,都没有更新,则说明这段时间内都没有发生调度(因为此线程优先级最高),则打印相应告警或根据配置可以进入panic流程。
基本代码分析(2.6.32)
rest_init->kernel_init->lockup_detector_init->cpu_callback->watchdog_prepare_cpu(初始化watchdog定时器):

点击(此处)折叠或打开

  1. static int watchdog_prepare_cpu(int cpu)

  2. {

  3.     struct hrtimer *hrtimer = &per_cpu(watchdog_hrtimer, cpu);


  4.     WARN_ON(per_cpu(softlockup_watchdog, cpu));

  5.     hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);//初始化高精度定时器

  6.     hrtimer->function = watchdog_timer_fn;//设置定时器处理函数


  7.     return 0;

  8. }

看门狗定时器处理函数:

点击(此处)折叠或打开

  1. static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)

  2. {

  3. //获取计数watchdog_touch_ts,该计数在watchdog内核线程被调度时更新

  4.     unsigned long touch_ts = __get_cpu_var(watchdog_touch_ts);

  5.     struct pt_regs *regs = get_irq_regs();

  6.     int duration;


  7.     /* kick the hardlockup detector */

  8. //增加中断计数,证明没有发生硬锁(关中断死锁)

  9.     watchdog_interrupt_count();


  10.     /* kick the softlockup detector */

  11. //唤醒wathdog内核线程

  12.     wake_up_process(__get_cpu_var(softlockup_watchdog));


  13.     /* .. and repeat */

  14. //重启定时器

  15.     hrtimer_forward_now(hrtimer, ns_to_ktime(get_sample_period()));

  16.     if (touch_ts == 0) {

  17.         if (unlikely(__get_cpu_var(softlockup_touch_sync))) {

  18.             /*

  19.              * If the time stamp was touched atomically

  20.              * make sure the scheduler tick is up to date.

  21.              */

  22.             __get_cpu_var(softlockup_touch_sync) = false;

  23.             sched_clock_tick();

  24.         }

  25.         __touch_watchdog();

  26.         return HRTIMER_RESTART;

  27.     }


  28.     /* check for a softlockup

  29.      * This is done by making sure a high priority task is

  30.      * being scheduled. The task touches the watchdog to

  31.      * indicate it is getting cpu time. If it hasn'then

  32.      * this is a good indication some task is hogging the cpu

  33.      */

  34. //判断是否发生了软锁,原理是判断touch_ts(时间戳)是否超过一定时间没有更新

  35.     duration = is_softlockup(touch_ts);

  36.     if (unlikely(duration)) {

  37.         /* only warn once */

  38.         if (__get_cpu_var(soft_watchdog_warn) == true)

  39.             return HRTIMER_RESTART;

  40. //发生了软锁后,进行一些列的信息记录和告警。

  41.         printk(KERN_EMERG "BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",

  42.             smp_processor_id(), duration,

  43.             current->comm, task_pid_nr(current));

  44.         print_modules();

  45.         print_irqtrace_events(current);

  46.         if (regs)

  47.             show_regs(regs);

  48.         else

  49.             dump_stack();

  50. //如果配置了softlockup_panic(proc中配置),则panic

  51.         if (softlockup_panic)

  52.             panic("softlockup: hung tasks");

  53.         __get_cpu_var(soft_watchdog_warn) = true;

  54.     } else

  55.         __get_cpu_var(soft_watchdog_warn) = false;


  56.     return HRTIMER_RESTART;

  57. }


启动看门狗,即创建watchdog内核线程。

点击(此处)折叠或打开

  1. static int watchdog_enable(int cpu)

  2. {

  3.     struct task_struct *= per_cpu(softlockup_watchdog, cpu);

  4.     int err = 0;


  5.     /* enable the perf event */

  6.     err = watchdog_nmi_enable(cpu);


  7.     /* Regardless of err above, fall through and start softlockup */


  8.     /* create the watchdog thread */

  9.     if (!p) {

  10. //创建watchdog内核线程

  11.         p = kthread_create(watchdog, (void *)(unsigned long)cpu, "watchdog/%d", cpu);

  12.         if (IS_ERR(p)) {

  13.             printk(KERN_ERR "softlockup watchdog for %i failed\n", cpu);

  14.             if (!err)

  15.                 /* if hardlockup hasn't already set this */

  16.                 err = PTR_ERR(p);

  17.             goto out;

  18.         }

  19.         kthread_bind(p, cpu);

  20.         per_cpu(watchdog_touch_ts, cpu) = 0;

  21.         per_cpu(softlockup_watchdog, cpu) = p;

  22.         wake_up_process(p);

  23.     }


  24. out:

  25.     return err;

  26. }


watchdog内核线程执行主函数,主要是要更新计数(时间戳)

点击(此处)折叠或打开

  1. static int watchdog(void *unused)

  2. {

  3. //设置为最高优先级

  4.     struct sched_param param = { .sched_priority = MAX_RT_PRIO-};

  5.     struct hrtimer *hrtimer = &__raw_get_cpu_var(watchdog_hrtimer);

  6. //设置为实时线程

  7.     sched_setscheduler(current, SCHED_FIFO, &param);


  8.     /* initialize timestamp */

  9. //初始化计数(时间戳)

  10.     __touch_watchdog();


  11.     /* kick off the timer for the hardlockup detector */

  12.     /* done here because hrtimer_start can only pin to smp_processor_id() */

  13. //启动定时器,用于检测是否发生软锁

  14.     hrtimer_start(hrtimer, ns_to_ktime(get_sample_period()),

  15.          HRTIMER_MODE_REL_PINNED);

  16. //睡眠

  17.     set_current_state(TASK_INTERRUPTIBLE);

  18.     /*

  19.      * Run briefly once per second to reset the softlockup timestamp.

  20.      * If this gets delayed for more than 60 seconds then the

  21.      * debug-printout triggers in watchdog_timer_fn().

  22.      */

  23.     while (!kthread_should_stop()) {

  24. //更新计数

  25.         __touch_watchdog();

  26.         schedule();


  27.         if (kthread_should_stop())

  28.             break;


  29.         set_current_state(TASK_INTERRUPTIBLE);

  30.     }

  31.     __set_current_state(TASK_RUNNING);


  32.     return 0;

  33. }


判断是否发生软锁:is_softlockup

点击(此处)折叠或打开

  1. static int is_softlockup(unsigned long touch_ts)

  2. {

  3.     unsigned long now = get_timestamp(smp_processor_id());


  4.     /* Warn about unreasonable delays: */

  5. //检测计数多久没有更新了,如果超过了60s,则表示发生了软锁

  6.     if (time_after(now, touch_ts + softlockup_thresh))

  7.         return now - touch_ts;


  8.     return 0;

  9. }


本文转自 guowang327 51CTO博客,原文链接:http://blog.51cto.com/guowang327/1962741,如需转载请自行联系原作者
相关文章
|
1月前
|
存储 SQL 监控
|
23天前
|
传感器 机器学习/深度学习 算法
车速检测
车速检测是现代交通管理和自动驾驶的关键技术,通过雷达、激光和计算机视觉等手段,实现对车辆速度的精准测量。本文重点介绍了利用计算机视觉中的目标检测(如YOLO)与跟踪算法(如CSRT)进行车速检测的方法,包括目标检测、跟踪及速度计算的具体步骤,展示了该技术在智能交通系统中的应用价值。
|
4月前
|
监控 安全 数据安全/隐私保护
Rootkit工作原理及其检测方法
【8月更文挑战第31天】
201 0
|
7月前
|
编解码 监控 计算机视觉
YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)
YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)
1030 0
|
传感器 存储
VM系列振弦采集模块的信号检测与分析计算
振弦传感器钢弦起振后,信号强度在短时间内迅速达到最大,然后在钢弦张力及空气阻力作用下逐渐恢复静止。我们可将整个振动过程分为起振、调整、稳定、消失几个阶段,上述几个阶段中,起振和调整阶段的振动又叫做强迫振动,稳定与消失阶段合称为自主振动。
297 66
VM系列振弦采集模块的信号检测与分析计算
|
存储 Linux 程序员
中断与异常简介与分析
中断与异常简介与分析
87 0
|
传感器
VM系列振弦采集模块信号检测与采样
VMXXX 内部有振弦传感器的信号检测、 有效性检测机制, 仅信号幅值位于预设的合理区间时,才会进行数据采样, 当完成足够数量的样本采样后立即进行信号质量分析计算,得到频率、频模值及多个信号质量表征值更新于对应的只读寄存器内,读取这些寄存器值,即可得到当前测量结果数据和信号质量。
VM系列振弦采集模块信号检测与采样
|
弹性计算 Kubernetes 监控
CloudIaC 漂移检测功能详解
云霁CloudIaC 是一款开源的基于terraform 的低代码平台管理库,本篇文章主要介绍其中关于配置漂移的处理方式。
1878 1
|
云安全 安全 Unix
安全检测 | 学习笔记
快速学习安全检测,重点介绍了如何在 Linux 下进行安全防护,并从用户系统安全、SSH 安全、恶意文件安全和云安全四个角度诠释如何提升系统的安全性。
安全检测 | 学习笔记
|
负载均衡 搜索推荐 Java
定时检测服务状态脚本实现
1、定时监测服务状态需求
233 0