Win8 Metro(C#)数字图像处理--2.43图像马赛克效果算法

简介: 原文:Win8 Metro(C#)数字图像处理--2.43图像马赛克效果算法  [函数名称]   图像马赛克效果        MosaicProcess(WriteableBitmap src, int v) [算法说明]   图像马赛克效果其实就是将图像分成大小一致的图像块,每一个图像块都是一个正方形,并且在这个正方形中所有像素值都相等。
原文: Win8 Metro(C#)数字图像处理--2.43图像马赛克效果算法



[函数名称]

  图像马赛克效果        MosaicProcess(WriteableBitmap src, int v)

[算法说明]

  图像马赛克效果其实就是将图像分成大小一致的图像块,每一个图像块都是一个正方形,并且在这个正方形中所有像素值都相等。我们可以将这个正方形看作是一个模板窗口,模板中对应的所有图像像素值都等于该模板的左上角第一个像素的像素值,这样的效果就是马赛克效果,而正方形模板的大小则决定了马赛克块的大小,即图像马赛克化的程度。

[函数代码]



<strong>       /// <summary>
        /// Mosaic process.
        /// </summary>
        /// <param name="src">The source image.</param>
        /// <param name="v">The threshould to control the result of mosaic process.</param>
        /// <returns></returns>
        public static WriteableBitmap MosaicProcess(WriteableBitmap src, int v)////图像马赛克效果
        {
            if (src != null)
            {
                int w = src.PixelWidth;
                int h = src.PixelHeight;
                WriteableBitmap srcImage = new WriteableBitmap(w, h);
                byte[] temp = src.PixelBuffer.ToArray();
                byte[] tempMask = (byte[])temp.Clone();
                int dR = 0;
                int dG = 0;
                int dB = 0;
                int dstX = 0;
                int dstY=0;
                dR = tempMask[2];
                dG = tempMask[1];
                dB = tempMask[0];
                for (int j = 0; j < h; j++)
                {
                    for (int i = 0; i < w; i++)
                    {
                        dstX = i;
                        dstY = j;
                        if (j % v == 0)
                        {
                            if (i % v == 0)
                            {
                                dB = tempMask[dstX * 4 + dstY * w * 4];
                                dG = tempMask[dstX * 4 + 1 + dstY * w * 4];
                                dR = tempMask[dstX * 4 + 2 + dstY * w * 4];
                            }
                            else
                            {
                                temp[dstX * 4 + dstY * w * 4] = (byte)dB;
                                temp[dstX * 4 + 1 + dstY * w * 4] = (byte)dG;
                                temp[dstX * 4 + 2 + dstY * w * 4] = (byte)dR;
                            }
                        }
                        else
                        {
                            temp[dstX * 4 + dstY * w * 4] = temp[dstX * 4 + (dstY - 1) * w * 4];
                            temp[dstX * 4 + 1 + dstY * w * 4] = temp[dstX * 4 + 1 + (dstY - 1) * w * 4];
                            temp[dstX * 4 + 2 + dstY * w * 4] = temp[dstX * 4 + 2 + (dstY - 1) * w * 4];
                        }
                    }
                }  
                Stream sTemp = srcImage.PixelBuffer.AsStream();
                sTemp.Seek(0, SeekOrigin.Begin);
                sTemp.Write(temp, 0, w * 4 * h);
                return srcImage;
            }
            else
            {
                return null;
            }
        }</strong>

[图像效果]




目录
相关文章
|
2月前
|
开发框架 算法 搜索推荐
C# .NET面试系列九:常见的算法
#### 1. 求质数 ```c# // 判断一个数是否为质数的方法 public static bool IsPrime(int number) { if (number < 2) { return false; } for (int i = 2; i <= Math.Sqrt(number); i++) { if (number % i == 0) { return false; } } return true; } class Progr
64 1
|
5月前
|
搜索推荐 算法 C#
【Unity 3D】C#中冒泡排序、选择排序、插入排序等算法的详解(附源码 超详细)
【Unity 3D】C#中冒泡排序、选择排序、插入排序等算法的详解(附源码 超详细)
56 1
|
2月前
|
搜索推荐 C#
C#实现插入排序算法
C#实现插入排序算法
12 1
|
2月前
|
搜索推荐 C#
C#实现选择排序算法
C#实现选择排序算法
17 2
|
2月前
|
搜索推荐 C#
C#实现冒泡排序算法
C#实现冒泡排序算法
20 0
|
4月前
|
算法 C#
C# .Net Core bytes转换为GB/MB/KB 算法
C# .Net Core bytes转换为GB/MB/KB 算法
48 0
|
5月前
|
存储 算法 数据处理
C# | 上位机开发新手指南(十一)压缩算法
流式压缩 流式压缩是一种能够实时处理数据流的压缩方式,例如音频、视频等实时传输的数据。 通过流式压缩算法,我们可以边读取边压缩数据,并能够随时输出已压缩的数据,以确保数据的实时性和减少存储和传输所需的带宽。 块压缩 块压缩则是将数据划分为固定大小的块,在每个块内进行独立的压缩处理。块压缩通常适用于文件、存储、传输等离线数据处理场景。 字典压缩 字典压缩是一种基于字典的压缩算法,通过建立一个字典来存储一组重复出现的字符串,并将这些字符串替换成字典中相应的索引,从而减少数据的存储和传输。字典压缩算法可以更好地处理数据中的重复模式,因为它们可以通过建立字典来存储和恢复重复出现的字符串。
53 0
C# | 上位机开发新手指南(十一)压缩算法
|
5月前
|
算法 C# 数据安全/隐私保护
C# | 上位机开发新手指南(十)加密算法——ECC
本篇文章我们将继续探讨另一种非对称加密算法——ECC。 严格的说,其实ECC并不是一种非对称加密算法,它是一种基于椭圆曲线的加密算法,广泛用于数字签名和密钥协商。 与传统的非对称加密算法(例如RSA)不同,ECC算法使用椭圆曲线上的点乘法来生成密钥对和进行加密操作,而不是使用大数分解等数学算法。这使得ECC算法具有相同的安全性和强度,但使用更少的位数,因此在资源受限的环境中具有优势。 ECC算法虽然使用公钥和私钥进行加密和解密操作,但是这些操作是基于点乘法实现的,而不是基于大数分解等算法实现的。因此,ECC算法可以被视为一种非对称加密算法的变体,但是它与传统的非对称加密算法有所不同。
139 0
C# | 上位机开发新手指南(十)加密算法——ECC
|
5月前
|
XML 算法 安全
C# | 上位机开发新手指南(九)加密算法——RSA
RSA的特性 非对称性 RSA算法使用公钥和私钥两个不同的密钥,公钥用于加密数据,私钥用于解密数据。公钥可以公开,任何人都可以使用,而私钥只有密钥持有人可以访问。 安全性 RSA算法基于大数分解难题,即将一个大的合数分解成其质数因子的乘积。由于目前没有有效的算法可以在合理的时间内对大质数进行分解,因此RSA算法被认为是一种安全的加密算法。 可逆性 RSA算法既可以用于加密,也可以用于解密。加密和解密都是可逆的过程,只要使用正确的密钥,就可以还原原始数据。 签名 RSA算法可以用于数字签名,用于验证数据的完整性和真实性。签名过程是将数据使用私钥进行加密,验证过程是将签名使用公钥进行解密。
110 0
C# | 上位机开发新手指南(九)加密算法——RSA
|
5月前
|
算法 搜索推荐 安全
C# | 上位机开发新手指南(八)加密算法——AES
AES——这是在加密算法中相当重要的一种加密方式! 虽然这个世界上已经存在了非对称加密算法(比如RSA、ECC等),但是在对称加密算法中,AES的地位依然相当重要。与非对称加密算法不同,对称加密算法使用的是相同的密钥对数据进行加密和解密,因此其加密和解密速度更快,而且更加高效。而在对称加密算法中,AES是目前最安全、最可靠的加密算法之一,其加密强度和运行效率都非常高。因此,无论是在个人计算机、移动设备,还是在服务器和云计算等领域,AES都被广泛应用于数据的加密和解密过程中。
101 0
C# | 上位机开发新手指南(八)加密算法——AES