什么是ODBO---OLE DB for OLAP

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 我怎么一步一步追到ODBO了?   mondrian核心api—>olap4j—>jedox也在用olap4j—>ODBO? ODBO是什么呢? OLE DB for OLAP (Object Linking and Embedding Database for Online Analyt...

 

我怎么一步一步追到ODBO了?   mondrian核心api—>olap4j—>jedox也在用olap4j—>ODBO?

ODBO是什么呢?

OLE DB for OLAP (Object Linking and Embedding Database for Online Analytical Processing abbreviated ODBO) is a Microsoft published specification and an industry standard for multi-dimensional data processing. ODBO is the standardapplication programming interface (API) for exchanging metadata and data between an OLAP server and a client on a Windows platform. ODBO extends the ability of OLE DB to access multi-dimensional (OLAP) data stores.

开始做,坚持做,重复做
相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
存储 缓存 分布式计算
阿里云服务器2核16G、4核32G、8核64G配置最新收费标准及活动价格参考(2024更新)
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择,目前用户购买2核16G配置活动价格最低为1473.41元/1年起,购买4核32G配置活动价格最低为2896.42元/1年起,购买8核64G配置活动价格最低为5742.43元/1年起,本文介绍这些配置的最新购买价格,包含原价收费标准和最新活动价格。
阿里云服务器2核16G、4核32G、8核64G配置最新收费标准及活动价格参考(2024更新)
|
XML Java 数据库连接
Spring Boot的数据访问之Spring Data JPA以及Hibernate的实战(超详细 附源码)
Spring Boot的数据访问之Spring Data JPA以及Hibernate的实战(超详细 附源码)
736 0
|
4月前
|
数据采集 机器学习/深度学习 边缘计算
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
本文详解爬虫代理设置常见报错场景及解决方案,涵盖IP失效、403封禁、性能瓶颈等问题,提供动态IP代理的12种核心处理方案及完整代码实现,助力提升爬虫系统稳定性。
323 0
|
6月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
3230 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
SQL 关系型数据库 MySQL
"告别蜗牛速度!解锁批量插入数据新姿势,15秒狂插35万条,数据库优化就该这么玩!"
【8月更文挑战第11天】在数据密集型应用中,高效的批量插入是性能优化的关键。传统单条记录插入方式在网络开销、数据库I/O及事务处理上存在明显瓶颈。批量插入则通过减少网络请求次数和数据库I/O操作,显著提升效率。以Python+pymysql为例,通过`executemany`方法,可实现在15秒内将35万条数据快速入库,相较于传统方法,性能提升显著,是处理大规模数据的理想选择。
808 5
|
虚拟化 Windows
VMwareWorkstationPro16的下载与安装,以及vm账号注册的问题
本文介绍了VMware Workstation Pro 16的下载、安装过程以及VMware账号的注册问题,包括如何检查虚拟化支持是否开启、VMware的下载步骤、注册VM账号时的常见问题以及VMware 16的安装步骤。
VMwareWorkstationPro16的下载与安装,以及vm账号注册的问题
|
缓存 运维 Docker
容器化运维:Docker Desktop 占用磁盘空间过大?教你轻松解决!
Windows Docker Desktop 使用过程中,因镜像、容器数据及构建缓存的累积,可能导致磁盘空间占用过高。通过删除无用镜像与容器、压缩磁盘以及清理构建缓存等方法,可有效释放空间。具体步骤包括关闭WSL、使用`diskpart`工具压缩虚拟磁盘、执行`docker buildx prune -f`清理缓存等。这些操作能显著减少磁盘占用,提升系统性能。
3394 5
|
网络协议 安全 网络架构
|
前端开发 JavaScript API
探索Python Django中的WebSocket集成:为前后端分离应用添加实时通信功能
【7月更文挑战第17天】现代Web开发趋势中,前后端分离配合WebSocket满足实时通信需求。Django Channels扩展了Django,支持WebSocket连接和异步功能。通过安装Channels、配置设置、定义路由和消费者,能在Django中实现WebSocket交互。前端使用WebSocket API连接后端,实现双向数据流,如在线聊天功能。集成Channels提升Web应用的实时性和用户体验,适应实时交互场景的需求。**
556 6
|
存储 数据挖掘 大数据
大数据数仓建模基础理论【维度表、事实表、数仓分层及示例】
数据仓库建模是组织和设计数据以支持数据分析的过程,包括ER模型和维度建模。ER模型通过实体和关系描述数据结构,遵循三范式减少冗余。维度建模,特别是Kimball方法,用于数据仓库设计,便于分析和报告。事实表存储业务度量,如销售数据,分为累积、快照、事务和周期性快照类型。维度表提供描述性信息,如时间、产品、地点和客户详情。数仓通常分层为ODS(源数据)、DWD(明细数据)、DIM(公共维度)、DWS(数据汇总)和ADS(应用数据),以优化数据管理、质量、查询性能和适应性。
5023 4