Hive高级优化

简介:


并发执行


job1: a join b aa
job2: c join d cc
job3: aa join cc
说明: job1和job2可以并行执行。

JVM重用

它是对map/reduce 运行的任务,一个jvm可以运行多个map 任务。小数据可以使用jvm重用。性能可以提升70%


Reduce的数据

默认reduce的任务是一个,可以根据自己的业务进行手动调整,不断测试把它调节到一个合适的值。


推测执行

说明:MapReduce调优,默认启用的,最后把它关闭掉,这只为false。
场景:运行reduce时,有的慢,有的快,applicationMaster在另外一个机器上启动一个一模一样的reduce,那个先完成用那个。


Map数据

说明:依照块的大小来


image.png
目录
相关文章
|
8月前
|
SQL 存储 分布式计算
Hive数据仓库设计与优化策略:面试经验与必备知识点解析
本文深入探讨了Hive数据仓库设计原则(分区、分桶、存储格式选择)与优化策略(SQL优化、内置优化器、统计信息、配置参数调整),并分享了面试经验及常见问题,如Hive与RDBMS的区别、实际项目应用和与其他组件的集成。通过代码样例,帮助读者掌握Hive核心技术,为面试做好充分准备。
714 0
|
SQL 分布式计算 监控
Hive性能优化之计算Job执行优化 2
Hive性能优化之计算Job执行优化
248 1
|
SQL 存储 分布式计算
Hive性能优化之表设计优化1
Hive性能优化之表设计优化1
89 1
|
8月前
|
SQL 分布式计算 资源调度
Hive 优化总结
Hive优化主要涉及HDFS和MapReduce的使用。问题包括数据倾斜、操作过多和不当使用。识别倾斜可通过检查分区文件大小或执行聚合抽样。解决方案包括整体优化模型设计,如星型、雪花模型,合理分区和分桶,以及压缩。内存管理需调整mapred和yarn参数。倾斜数据处理通过选择均衡连接键、使用map join和combiner。控制Mapper和Reducer数量以避免小文件和资源浪费。减少数据规模可调整存储格式和压缩,动态或静态分区管理,以及优化CBO和执行引擎设置。其他策略包括JVM重用、本地化运算和LLAP缓存。
197 4
Hive 优化总结
|
8月前
|
SQL HIVE 索引
Hive【Hive(五)函数-高级聚合函数、炸裂函数】
Hive【Hive(五)函数-高级聚合函数、炸裂函数】
|
7月前
|
SQL 资源调度 数据库连接
Hive怎么调整优化Tez引擎的查询?在Tez上优化Hive查询的指南
在Tez上优化Hive查询,包括配置参数调整、理解并行化机制以及容器管理。关键步骤包括YARN调度器配置、安全阀设置、识别性能瓶颈(如mapper/reducer任务和连接操作),理解Tez如何动态调整mapper和reducer数量。例如,`tez.grouping.max-size` 影响mapper数量,`hive.exec.reducers.bytes.per.reducer` 控制reducer数量。调整并发和容器复用参数如`hive.server2.tez.sessions.per.default.queue` 和 `tez.am.container.reuse.enabled`
653 0
|
8月前
|
SQL 存储 大数据
Hive的查询、数据加载和交换、聚合、排序、优化
Hive的查询、数据加载和交换、聚合、排序、优化
178 2
|
8月前
|
SQL 存储 分布式计算
【Hive】Hive优化有哪些?
【4月更文挑战第16天】【Hive】Hive优化有哪些?
|
8月前
|
SQL 分布式计算 资源调度
一文看懂 Hive 优化大全(参数配置、语法优化)
以下是对提供的内容的摘要,总长度为240个字符: 在Hadoop集群中,服务器环境包括3台机器,分别运行不同的服务,如NodeManager、DataNode、NameNode等。集群组件版本包括jdk 1.8、mysql 5.7、hadoop 3.1.3和hive 3.1.2。文章讨论了YARN的配置优化,如`yarn.nodemanager.resource.memory-mb`、`yarn.nodemanager.vmem-check-enabled`和`hive.map.aggr`等参数,以及Map-Side聚合优化、Map Join和Bucket Map Join。
434 0
Hive学习---4、函数(单行函数、高级聚合函数、炸裂函数、窗口函数)(二)
Hive学习---4、函数(单行函数、高级聚合函数、炸裂函数、窗口函数)(二)

热门文章

最新文章