Redis经验谈

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 新浪作为全世界最大的Redis用户,在开发和运维方面有非常多的经验。本文作者来自新浪,希望能为业界提供一些亲身经历,让大家少走弯路。 使用初衷 从2010年上半年起,我们就开始尝试使用Redis,主要出于以下几方面的考虑。

新浪作为全世界最大的Redis用户,在开发和运维方面有非常多的经验。本文作者来自新浪,希望能为业界提供一些亲身经历,让大家少走弯路。

使用初衷

从2010年上半年起,我们就开始尝试使用Redis,主要出于以下几方面的考虑。

  • 性能比MySQL好。因为业务的发展对性能的需求越来越强烈。
  • 丰富的数据类型。在速度就是市场的互联网时代,快速开发是一个不变的需求。
  • Cache宕机让人纠结,Redis有半持久化和持久化两种方式,能从某种程度上解决这个问题,以减少Cache宕机带来的雪崩效应。
  • 在部分业务场景中,使用MySQL+Memcached存在一致性问题,若使用Redis替代,能降低整体架构复杂度。

完善过程

在开始应用Redis时,规模比较小,数据量也很小,没有遇到太多的问题。而随着数据量的增加,遇到了很多问题。总结一句话就是,当数据量变大时,以前不是问题的问题都变成了问题。

Master/Slave同步问题

首先遇到的是Master/Slave的同步问题。它的原理是Slave做了Slaveof之后,向Master发送一个Sync,Master把内存的数 据Dump出来,形成rdb文件,然后传到Slave,Slave把这个文件加载到内存,完成之后Master向Slave发送新数据包。

在网络出现问题时,比如瞬断,会导致Master里的数据全部重传。对单个端口来说,如果数据量小,那么这个影响不大,而如果数据量比较大的话,则会导致网 络瞬间流量暴增,同时在同步时Slave做不了读操作。我们对其进行了修改,加入Position的概念来解决这个问题,确保在网络出现问题时不会重传所 有数据,只重传断开时后面的数据。

aof的定期归档问题

Redis默认产生的aof文件需要手工做 bgrewrite-aof,这个操作产生的lock会对写产生一定的影响。因此,我们最开始用脚本在凌晨业务低峰时进行这个操作。而随着数量的增 加,lock的时间越来越不能被业务接受。我们对源代码进行了修改,将bgrewriteaof放到Redis内部去实现,在配置文件内制定执行时间,让这个操作自动执行,并且不会导致写产生的lock问题。

同时,我们还将aof设计得与MySQL的binlog类似,设定每个aof的大小,在达到一定值时,会自动产生一个新的aof。

Mytrigger和MytriggerQ的设计

业务有这样的需求:应用按用户维度写入数据,统计用户的记录数(如关注数、粉丝数)时,需要从数据库中执行count(*)操作。在InnoDB中执行这个 相对较慢,而增加Cache方案又满足不了业务对实时性的要求。因此,我们开发了Mytrigger组件来读取MySQL的binlog,然后通过业务逻 辑转化写入Redis。

例如,MySQL中存每条记录,Redis中存按用户维度的记录总和。这样实现之后,应用从MySQL中读取数据,从Redis里读取记录条数,MySQL的压力降低很多,同时计数读取性能提高了很多。

如果应用是数据的写入方,那么它需要将数据写入数据库,同时需要把这些新增或变更通知给另一个应用,另一个应用获得这些新增或更新后开始做自己的业务逻辑处理。

刚开始,我们采用了写数据库的同时再写一份MemcacheQ的方法,后来更换为MytriggerQ读取MySQL的binlog,将读取到的数据转化为 队列。需要了解数据变化的业务通过读取这个MytriggerQ服务来获取数据的变化。这样,应用只用写一次,简化了应用架构的复杂度。

容量设计

在申请使用Redis之前,我们会对业务进行评估。通过填写预计容量和性能需求表格,我们能算出Redis占用的内存量,确保单个端口的数据量不高于机器内存的三分之一。

当前,我们使用的是96GB的内存型机型,每个端口最终容量控制在30GB以下。当业务需求的容量超过机器最大内存时,采用的拆分方式是Hash到多个端 口,通过基准测试得出在容量允许的情况下,一台机器部署2个实例、4个实例或8个实例的最大性能,预留20%的容量用于增长,根据业务指标计算出需要的资 源数。

使用了Redis自身的过期策略之后,发现存入Redis的数据有可能出现即使还有大量内存没有使用,Redis还会让key过期去释放内存,或者内存不足时key还没有过期的问题。

对于过期的数据,我们采用清理和滚动两种方式。清理容易出现内存碎片;滚动即建两组端口,同时写两组端口。比如要保留3个月的数据,那么每个断开保留6个月 的数据,两个同时写,使用奇数端口,在第4个月时,把读写切换到偶数端口,同时清理奇数端口里的数据,但使用这种方式带来了很高的维护成本。

应用场景

做Cache还是做Storage是我们一直在思考的问题。Redis有持久化和半持久化两种方式,但即使这样,所有Redis的数据都在内存中。大数据量存储时,数据类型的优势将越来越不明显。

当数据量小时,可以不用做过多考虑,因为一切都不是问题,可以利用其丰富的数据类型带来业务的快速开发和上线;数据量总量和增加量都相对可控,数据比较精细 可以使用Redis做存储。例如,用户维度的计数就用Redis来做Storage。但对于对象维度,如微博维度的数据使用Redis做Cache。

有些业务的容量增长过快,与之前的预计有出入,且所有的数据都在内存中,没有冷热区分(降低存储最好的办法就是分级存储),我们就将这部分不再适合放在 Redis的业务使用新的方案代替。例如把它替换成MySQL+Memcached的方式。因为每次做滚动切换的方案运维成本和硬件成本投入都很高,所以 可使用HandlerSocket来替换。例如,前6个月的数据放在Redis中,之后的数据放到MySQL中,在减少切换的同时也能降低运维成本。

未来的计划

随着机器规模的不断增加,可用性和自动化需求越来越强烈,目前我们正在结合ZooKeeper设计Redis的自动切换,同时提高Redis自动化维护需 求。我们会开发一个高速数据访问框架和管理系统,将故障切换、数据拆分逻辑和自动数据迁移放到里面,实现其应用的产品化。希望走过的这些路对大家在使用 Redis的过程中有所帮助。

作者杨海朝,新浪首席DBA,在大规模高并发、海量访问方面有丰富的管理经验。热衷于整体架构、数据库设计、性能优化、分布式部署方案和高可用性方面的研究。

如何联系我:【万里虎】www.bravetiger.cn 【QQ】3396726884 (咨询问题100元起,帮助解决问题500元起) 【博客】http://www.cnblogs.com/kenshinobiy/
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
120 1
|
17天前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
162 85
|
3月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
54 2
数据的存储--Redis缓存存储(二)
|
3月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
87 6
|
3月前
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
247 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
|
15天前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
2月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
353 22
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
46 5