最佳实践:如何基于MNS实现一对多拉取消息消费模型

本文涉及的产品
对象存储 OSS,20GB 3个月
文件存储 NAS,50GB 3个月
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 如何实现一对多拉取消息消费模型 问题背景: 阿里云消息服务MNS 已经提供队列(queue)和主题(topic)两种模型。其中队列提供的是一对多的共享消息消费模型,采用客户端主动拉取(Pull)模式;主题模型提供一对多的广播消息消费模型,并且采用服务端主动推送(Push)模式。上面两种模型基

如何实现一对多拉取消息消费模型

问题背景

阿里云消息服务MNS 已经提供队列(queue)和主题(topic)两种模型。其中队列提供的是一对多的共享消息消费模型,采用客户端主动拉取(Pull模式;主题模型提供一对多的广播消息消费模型,并且采用服务端主动推送(Push模式。上面两种模型基本能满足我们大多数应用场景。

 

推送模式的好处是即时性能比较好,但是需要暴露客户端地址来接收服务端的消息推送。有些情况下,比如企业内网,我们无法暴露推送地址,希望改用拉取(Pull)的方式。虽然MNS不直接提供这种消费模型,但是我们可以结合主题和队列来实现一对多的拉取消息消费模型。具体方案如下:

 

解决方案:

让主题将消息先推送到队列,然后由消费者从队列拉取消息。这样既可以做到1对多的广播消息,又不需要暴露消费者的地址;如下图所示:


接口说明:

MNS最新的Java SDK (1.1.5)中的CloudPullTopic 默认支持上述解决方案。其中

MNSClient 提供下面两个接口来快速创建CloudPullTopic

public CloudPullTopic createPullTopic(TopicMeta topicMeta, Vector<String> queueNameList, boolean needCreateQueue, QueueMeta queueMetaTemplate)
 
public CloudPullTopic createPullTopic(TopicMeta topicMeta, Vector<String> queueNameList)

其中,TopicMeta 是创建topicmeta 设置, queueNameList里指定topic消息推送的队列名列表;needCreateQueue表明queueNameList是否需要创建;queueMetaTemplate是创建queue需要的queue meta 参数设置;


Demo 代码

        CloudAccount account = new CloudAccount(accessKeyId, accessKeySecret, endpoint);
        MNSClient client = account.getMNSClient();

        // build consumer name list.
        Vector<String> consumerNameList = new Vector<String>();
        String consumerName1 = "consumer001";
        String consumerName2 = "consumer002";
        String consumerName3 = "consumer003";
        consumerNameList.add(consumerName1);
        consumerNameList.add(consumerName2);
        consumerNameList.add(consumerName3);
        QueueMeta queueMetaTemplate = new QueueMeta();
        queueMetaTemplate.setPollingWaitSeconds(30);

        try{
            //producer code:
            // create pull topic which will send message to 3 queues for consumer.
            String topicName = "demo-topic-for-pull";
            TopicMeta topicMeta = new TopicMeta();
            topicMeta.setTopicName(topicName);
            CloudPullTopic pullTopic = client.createPullTopic(topicMeta, consumerNameList, true, queueMetaTemplate);

            //publish message and consume message.
            String messageBody = "broadcast message to all the consumers:hello the world.";
            // if we sent raw message,then should use getMessageBodyAsRawString to parse the message body correctly.
            TopicMessage tMessage = new RawTopicMessage(); 
            tMessage.setBaseMessageBody(messageBody);
            pullTopic.publishMessage(tMessage);

            // consumer code:
            //3 consumers receive the message.
            CloudQueue queueForConsumer1 = client.getQueueRef(consumerName1);
            CloudQueue queueForConsumer2 = client.getQueueRef(consumerName2);
            CloudQueue queueForConsumer3 = client.getQueueRef(consumerName3);

            Message consumer1Msg = queueForConsumer1.popMessage(30);
            if(consumer1Msg != null) 
            {
                System.out.println("consumer1 receive message:" + consumer1Msg.getMessageBodyAsRawString());
            }else{
                System.out.println("the queue is empty");
            }

            Message consumer2Msg = queueForConsumer2.popMessage(30);
            if(consumer2Msg != null) 
            {
                System.out.println("consumer2 receive message:" + consumer2Msg.getMessageBodyAsRawString());
            }else{
                System.out.println("the queue is empty");
            }

            Message consumer3Msg = queueForConsumer3.popMessage(30);
            if(consumer3Msg != null) 
            {
                System.out.println("consumer3 receive message:" + consumer3Msg.getMessageBodyAsRawString());
            }else{
                System.out.println("the queue is empty");
            }

            // delete the fullTopic.
            pullTopic.delete();
        }catch(ClientException ce)
        {
            System.out.println("Something wrong with the network connection between client and MNS service."
                    + "Please check your network and DNS availablity.");
            ce.printStackTrace();
        }
        catch(ServiceException se)
        {
            /*you can get more MNS service error code in following link.
              https://help.aliyun.com/document_detail/mns/api_reference/error_code/error_code.html?spm=5176.docmns/api_reference/error_code/error_response
            */
            se.printStackTrace();
        }

        client.close();


相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
6月前
|
消息中间件
RabbitMQ消息模型之Work Queues
RabbitMQ消息模型之Work Queues
49 1
RabbitMQ消息模型之Work Queues
|
6月前
|
消息中间件
RabbitMQ消息模型之Routing-Topic
RabbitMQ消息模型之Routing-Topic
45 0
|
6月前
|
消息中间件 缓存
RabbitMQ消息模型之Sample
RabbitMQ消息模型之Sample
37 0
|
6月前
|
消息中间件
RabbitMQ消息模型之Routing-Direct
RabbitMQ消息模型之Routing-Direct
98 1
|
消息中间件 弹性计算 Java
使用阿里云性能测试工具 JMeter 场景压测 RocketMQ 最佳实践
使用阿里云性能测试工具 JMeter 场景压测 RocketMQ 最佳实践
1263 6
|
6月前
|
消息中间件
RabbitMQ消息模型之发布订阅Publish-Subscribe
RabbitMQ消息模型之发布订阅Publish-Subscribe
85 0
RabbitMQ消息模型之发布订阅Publish-Subscribe
|
6月前
|
消息中间件 JSON 缓存
RabbitMQ快速学习之WorkQueues模型、三种交换机、消息转换器(SpringBoot整合)
RabbitMQ快速学习之WorkQueues模型、三种交换机、消息转换器(SpringBoot整合)
162 0
|
3月前
|
消息中间件 测试技术 Kafka
Apache RocketMQ 批处理模型演进之路
RocketMQ 早期批处理模型存在一定的约束条件,为进一步提升性能,RocketMQ 进行了索引构建流水线改造,同时 BatchCQ 模型和 AutoBatch 模型也优化了批处理流程,提供了更简便的使用体验,快点击本文查看详情及配置展示~
19768 78
|
2月前
|
消息中间件 存储 缓存
RabbitMQ:WorkQueues模型
RabbitMQ:WorkQueues模型
47 8
RabbitMQ:WorkQueues模型
|
3月前
|
消息中间件 RocketMQ
RocketMQ - 生产者最佳实践总结
RocketMQ - 生产者最佳实践总结
45 0