开发者社区> 技术小阿哥> 正文

python 相见恨晚的itertools库

简介:
+关注继续查看

itertools库

迭代器(生成器)在Python中是一种很常用也很好用的数据结构,比起列表(list)来说,迭代器最大的优势就是延迟计算,按需使用,从而提高开发体验和运行效率,以至于在Python 3中map,filter等操作返回的不再是列表而是迭代器。

话虽这么说但大家平时用到的迭代器大概只有range了,而通过iter函数把列表对象转化为迭代器对象又有点多此一举,这时候我们今天的主角itertools就该上场了。

使用itertools

itertools中的函数大多是返回各种迭代器对象,其中很多函数的作用我们平时要写很多代码才能达到,而在运行效率上反而更低,毕竟人家是系统库。

itertools.accumulate

简单来说就是累加。

>>> import itertools
>>> x = itertools.accumulate(range(10))
>>> print(list(x))
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

itertools.chain

连接多个列表或者迭代器。

>>> x = itertools.chain(range(3), range(4), [3,2,1])
>>> print(list(x))
[0, 1, 2, 0, 1, 2, 3, 3, 2, 1]

itertools.combinations

求列表或生成器中指定数目的元素不重复的所有组合

>>> x = itertools.combinations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]

itertools.combinations_with_replacement

允许重复元素的组合

>>> x = itertools.combinations_with_replacement('ABC', 2)
>>> print(list(x))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]

itertools.compress

按照真值表筛选元素

>>> x = itertools.compress(range(5), (True, False, True, True, False))
>>> print(list(x))
[0, 2, 3]

itertools.count

就是一个计数器,可以指定起始位置和步长

>>> x = itertools.count(start=20, step=-1)
>>> print(list(itertools.islice(x, 0, 10, 1)))
[20, 19, 18, 17, 16, 15, 14, 13, 12, 11]

itertools.cycle

循环指定的列表和迭代器

>>> x = itertools.cycle('ABC')
>>> print(list(itertools.islice(x, 0, 10, 1)))
['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A']

itertools.dropwhile

按照真值函数丢弃掉列表和迭代器前面的元素

>>> x = itertools.dropwhile(lambda e: e < 5, range(10))
>>> print(list(x))
[5, 6, 7, 8, 9]

itertools.filterfalse

保留对应真值为False的元素

>>> x = itertools.filterfalse(lambda e: e < 5, (1, 5, 3, 6, 9, 4))
>>> print(list(x))
[5, 6, 9]

itertools.groupby

按照分组函数的值对元素进行分组

>>> x = itertools.groupby(range(10), lambda x: x < 5 or x > 8)                                                                                                 
>>> for condition, numbers in x:                                                  
...     print(condition, list(numbers))                                                                                                        
True [0, 1, 2, 3, 4]                                                              
False [5, 6, 7, 8]                                                                
True [9]

itertools.islice

上文使用过的函数,对迭代器进行切片

>>> x = itertools.islice(range(10), 0, 9, 2)
>>> print(list(x))
[0, 2, 4, 6, 8]

itertools.permutations

产生指定数目的元素的所有排列(顺序有关)

>>> x = itertools.permutations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]

itertools.product

产生多个列表和迭代器的(积)

>>> x = itertools.product('ABC', range(3))
>>>>>> print(list(x))
[('A', 0), ('A', 1), ('A', 2), ('B', 0), ('B', 1), ('B', 2), ('C', 0), 
('C', 1), ('C', 2)]

itertools.repeat

简单的生成一个拥有指定数目元素的迭代器

>>> x = itertools.repeat(0, 5)
>>> print(list(x))
[0, 0, 0, 0, 0]

itertools.starmap

类似map

>>> x = itertools.starmap(str.islower, 'aBCDefGhI')
>>> print(list(x))
[True, False, False, False, True, True, False, True, False]

itertools.takewhile

与dropwhile相反,保留元素直至真值函数值为假。

>>> x = itertools.takewhile(lambda e: e < 5, range(10))
>>> print(list(x))
[0, 1, 2, 3, 4]

itertools.tee

这个函数我也不是很懂,似乎是生成指定数目的迭代器

>>> x = itertools.tee(range(10), 2)
>>> for letters in x:
...     print(list(letters))
...
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

itertools.zip_longest

类似于zip,不过已较长的列表和迭代器的长度为准


[(0, 0), (1, 1), (2, 2)]



本文转自 baby神 51CTO博客,原文链接:http://blog.51cto.com/babyshen/1912750,如需转载请自行联系原作者

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Python中h5py与netCDF4库在Anaconda的配置方法
本文介绍基于Anaconda环境,下载并安装Python中h5py与netCDF4这两个模块的方法~
32 0
如何使用python+urllib库+代理IP爬取新闻数据
如何使用python+urllib库+代理IP爬取数据
40 0
软件测试|超好用超简单的Python GUI库——tkinter
软件测试|超好用超简单的Python GUI库——tkinter
32 0
轻轻松松学会Python入门四:turtle库的使用
a.b()形式,这种通过使用函数库并利用库中函数进行编程的方法是Python语言中最重要的特点,称为“模块编程”。后面会详细讲解。
48 0
Python编程:six库兼容Python 2 和 Python 3
six 它是一个专门用来兼容 Python 2 和 Python 3 的库
23 0
10个用于可解释AI的Python库
XAI的目标是为模型的行为和决定提供有意义的解释,本文整理了目前能够看到的10个用于可解释AI的Python库
60 0
Python编程:pickleDB库Redis的简易替代
pickleDB 是一个轻量简单的 key-value 存储器,操作和redis 很类似 可以作为一个不错的工具
34 0
【Python | Networks库详解】最佳实践(22年电工杯B题之路径可视化)
【Python | Networks库详解】最佳实践(22年电工杯B题之路径可视化)
52 0
国王小组:搭建数字货币交易所开发日历的 Python 库
原生交易所开发详情丨原生交易所系统开发(成熟技术)丨原生交易所现成源码部署 交易所系统丨交易所系统开发(逻辑及功能)丨交易所开发源码交付 秒合约开发原理丨秒合约系统开发(详细规则)丨秒合约源码案例部署 永续合约/秒合约/合约交易所开发详情,永续合约/秒合约/合约交易所系统开发技术方案 深入分析代币合约流动性质押挖矿分红系统开发实现技术原理及源码部署 交易所系统开发如何开发?数字货币交易所系统开发成熟技术案例 去中心化交易所系统开发技术原理丨数字货币去中心化交易所系统开发(说明案例)
71 0
Python pydot与graphviz库在Anaconda中的配置
本文介绍在Anaconda环境中,安装Python语言pydot与graphviz两个模块的方法~
23 0
文章
问答
文章排行榜
最热
最新
相关电子书
更多
给运维工程师的Python实战课
立即下载
Python 脚本速查手册
立即下载
ACE 区域技术发展峰会:Flink Python Table API入门及实践
立即下载