Go语言之读写锁

简介:

前面的有篇文章在讲资源竞争的时候,提到了互斥锁。互斥锁的根本就是当一个goroutine访问的时候,其他goroutine都不能访问,这样肯定保证了资源的同步,避免了竞争,不过也降低了性能。


仔细剖析我们的场景,当我们读取一个数据的时候,如果这个数据永远不会被修改,那么其实是不存在资源竞争的问题的。因为数据是不变的,不管怎么读取,多少goroutine同时读取,都是可以的。


所以其实读取并不是问题,问题主要是修改。修改的数据要同步,这样其他goroutine才可以感知到。所以真正的互斥应该是读取和修改修改和修改之间,读取和读取是没有互斥操作的。


所以这就延伸出来另外一种锁,叫做读写锁


读写锁可以让多个读操作同时并发,同时读取,但是对于写操作是完全互斥的。也就是说,当一个goroutine进行写操作的时候,其他goroutine既不能进行读操作,也不能进行写操作。


var count int
var wg sync.WaitGroup
func main() {    wg.Add(10)    for i:=0;i<5;i++ {            go read(i)    }        for i:=0;i<5;i++ {            go write(i);    }    wg.Wait()}func read(n int) {    fmt.Printf("读goroutine %d 正在读取...\n",n)    v := count    fmt.Printf("读goroutine %d 读取结束,值为:%d\n", n,v)    wg.Done()
}
func write(n int) {    fmt.Printf("写goroutine %d 正在写入...\n",n)    v := rand.Intn(1000)    count = v    fmt.Printf("写goroutine %d 写入结束,新值为:%d\n", n,v)    wg.Done()
}


以上我们定义了一个共享的资源count,并且声明了两个函数readwrite进行读写。在main函数的测试中,我们同时启动了 5 个读写goroutine进行读写操作,通过打印的结果来看,写入操作是处于竞争状态的,有的写入操作被覆盖了。通过go build -race也可以看到更明细的竞争态。


针对这种情况,第一个方案是加互斥锁,同时只能有一个goroutine可以操作count。但是这种方法性能比较慢,而且我们说的读操作可以不互斥,所以这种情况比较适合使用读写锁。


var count int
var wg sync.WaitGroup
var rw sync.RWMutex
func main() {    wg.Add(10)    for i:=0;i<5;i++ {            go read(i)    }        for i:=0;i<5;i++ {            go write(i);    }    wg.Wait()}func read(n int) {    rw.RLock()    fmt.Printf("读goroutine %d 正在读取...\n",n)    v := count    fmt.Printf("读goroutine %d 读取结束,值为:%d\n", n,v)    wg.Done()    rw.RUnlock()}func write(n int) {    rw.Lock()    fmt.Printf("写goroutine %d 正在写入...\n",n)    v := rand.Intn(1000)    count = v    fmt.Printf("写goroutine %d 写入结束,新值为:%d\n", n,v)    wg.Done()    rw.Unlock()
}


我们在read里使用读锁,也就是RLockRUnlock,写锁的方法名和我们平时使用的一样,是LockUnlock。这样,我们就使用了读写锁,可以并发地读,但是同时只能有一个写,并且写的时候不能进行读操作。现在我们再运行代码,可以从输出的数据看到,可以读到新值了。


我们同时也可以使用go build -race检测,也没有竞争提示了。


我们在做Java开发的时候,肯定知道SynchronizedMap这个Map,它是一个在多线程下安全的Map,我们可以通过Collections.synchronizedMap(Map<K, V>)来获取一个安全的Map。下面我们看看如何使用读写锁,基于Go语言来实现一个安全的Map。


package common
import (    "sync")
//安全的Map
type SynchronizedMap struct {    rw *sync.RWMutex    data map[interface{}]interface{}
}
//存储操作
func (sm *SynchronizedMap) Put(k,v interface{}){    sm.rw.Lock()    defer sm.rw.Unlock()    sm.data[k]=v
}
//获取操作
func (sm *SynchronizedMap) Get(k interface{}) interface{}{    sm.rw.RLock()    defer sm.rw.RUnlock()    return sm.data[k]
}
//删除操作
func (sm *SynchronizedMap) Delete(k interface{}) {    sm.rw.Lock()    defer sm.rw.Unlock()    delete(sm.data,k)
}
//遍历Map,并且把遍历的值给回调函数,可以让调用者控制做任何事情
func (sm *SynchronizedMap) Each(cb func (interface{},interface{})){    sm.rw.RLock()    defer sm.rw.RUnlock()    for k, v := range sm.data {        cb(k,v)    }
}
//生成初始化一个SynchronizedMap
func NewSynchronizedMap() *SynchronizedMap{    return &SynchronizedMap{        rw:new(sync.RWMutex),        data:make(map[interface{}]interface{}),    }
}


这个安全的Map被我们定义为一个SynchronizedMap的结构体,这个结构体里有两个字段,一个是读写锁rw,一个是存储数据的datadata是map类型。


然后就是给SynchronizedMap定义一些方法,如果这些方法是增删改的,就要使用写锁;如果是只读的,就使用读锁。这样就保证了我们数据data在多个goroutine下的安全性。


有了这个安全的Map我们就可以在多goroutine下增删改查数据了,都是安全的。


这里定义了一个Each方法,这个方法很有意思,用过Gradle的都知道,也有类似遍历Map的方法。这个方法我们可以传入一个回调函数作为参数,来对我们遍历的SynchronizedMap数据进行处理,比如我打印SynchronizedMap中的数据。


sm.Each(func(k interface{}, v interface{}) {
    fmt.Println(k," is ",v)
}


sm就是一个SynchronizedMap,非常简洁吧。


以上就是读写锁使用的一个例子。我们可以把这个map数据当成缓存数据,或者当成数据库,然后使用读写锁进行控制,可以多读,但是只能有一个写。



本文转自 baby神 51CTO博客,原文链接:http://blog.51cto.com/babyshen/1944744,如需转载请自行联系原作者

相关文章
|
2天前
|
存储 Go 索引
go语言使用for循环遍历
go语言使用for循环遍历
16 7
|
5天前
|
存储 Go
go语言 遍历映射(map)
go语言 遍历映射(map)
18 2
|
6天前
|
Go 调度 开发者
Go语言中的并发编程:深入理解goroutines和channels####
本文旨在探讨Go语言中并发编程的核心概念——goroutines和channels。通过分析它们的工作原理、使用场景以及最佳实践,帮助开发者更好地理解和运用这两种强大的工具来构建高效、可扩展的应用程序。文章还将涵盖一些常见的陷阱和解决方案,以确保在实际应用中能够避免潜在的问题。 ####
|
6天前
|
测试技术 Go 索引
go语言使用 range 关键字遍历
go语言使用 range 关键字遍历
14 3
|
6天前
|
测试技术 Go 索引
go语言通过 for 循环遍历
go语言通过 for 循环遍历
16 3
|
8天前
|
安全 Go 数据处理
Go语言中的并发编程:掌握goroutine和channel的艺术####
本文深入探讨了Go语言在并发编程领域的核心概念——goroutine与channel。不同于传统的单线程执行模式,Go通过轻量级的goroutine实现了高效的并发处理,而channel作为goroutines之间通信的桥梁,确保了数据传递的安全性与高效性。文章首先简述了goroutine的基本特性及其创建方法,随后详细解析了channel的类型、操作以及它们如何协同工作以构建健壮的并发应用。此外,还介绍了select语句在多路复用中的应用,以及如何利用WaitGroup等待一组goroutine完成。最后,通过一个实际案例展示了如何在Go中设计并实现一个简单的并发程序,旨在帮助读者理解并掌
|
7天前
|
Go 索引
go语言按字符(Rune)遍历
go语言按字符(Rune)遍历
21 3
|
18天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
38 2
|
16天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
26 2