Guice框架-DI(依赖注入之作用域)

简介:

本章节继续讨论依赖注入的其他话题,包括作用域(scope,这里有一个与线程绑定的作用域例子)、立即初始化(Eagerly Loading Bindings)、运行阶段(Stage)、选项注入(Optional Injection)等等。

 

 

1.3.5 Scope(作用域)

 

在1.1章节中我们初步了解了对象的单例模式,在Guice中提供了一些常见的作用域,比如对于单例模式有下面两个作用域。

 

 

    com.google.inject.Scopes.SINGLETON

 

    com.google.inject.Scopes.NO_SCOPE

 

在使用上,可以使用Module的bind来实现,看下面的例子。

 

 

 1     public class ScopeDemo {

 2         public static void main(String[] args) {

 3 

 4             Service service = Guice.createInjector(new Module() {

 5                 @Override

 6                 public void configure(Binder binder) {

 7                     binder.bind(Service.class).to(WwwService.class).in(Scopes.SINGLETON);

 8                 }

 9             }).getInstance(Service.class);

10             service.execute();

11         }

12     }

13 

14 

当然单例模式还可以似乎用@Singleton注解。

 

 

在com.google.inject.binder.ScopedBindingBuilder.in(Scope)方法中,一个Scope除了可以使上面的SINGLETION和NO_SCOPE外,还可以是自己定义的Scope。下面的例子演示了一个与线程绑定的Scope例子。

 

 1 /**

 2  * $Id: ThreadScopeDemo.java 90 2009-12-25 08:12:21Z xylz $

 3  * xylz study project (www.imxylz.cn)

 4  */

 5 package cn.imxylz.study.guice.inject.more;

 6 

 7 import com.google.inject.Binder;

 8 import com.google.inject.Guice;

 9 import com.google.inject.Injector;

10 import com.google.inject.Key;

11 import com.google.inject.Module;

12 import com.google.inject.Provider;

13 import com.google.inject.Scope;

14 

15 /** a demo with thread-scope

16  * @author xylz (www.imxylz.cn)

17  * @version $Rev: 90 $

18  */

19 public class ThreadScopeDemo {

20 

21     static class ThreadServiceScope implements Scope {

22 

23         static ThreadLocal<Object> threadLocal = new ThreadLocal<Object>();

24 

25         @Override

26         public <T> Provider<T> scope(final Key<T> key, final Provider<T> unscoped) {

27             return new Provider<T>() {

28                 @Override

29                 public T get() {

30                     T instance = (T) threadLocal.get();

31                     if (instance == null) {

32                         instance = unscoped.get();

33                         threadLocal.set(instance);

34                     }

35                     return instance;

36                 }

37             };

38         }

39 

40         @Override

41         public String toString() {

42             return "Scopes.ThreadServiceScope";

43         }

44     }

45     

46     public static void main(String[] args) {

47         final Injector inj=Guice.createInjector(new Module() {

48             @Override

49             public void configure(Binder binder) {

50                 binder.bind(Service.class).to(WwwService.class).in(new ThreadServiceScope());

51             }

52         });

53         for(int i=0;i<3;i++) {

54             new Thread("Thread-"+i) {

55                 public void run() {

56                     for(int m=0;m<3;m++) {

57                         System.out.println(String.format("%s-%d:%d",//

58                                 getName()//

59                                 ,m//

60                                 ,inj.getInstance(Service.class).hashCode()));

61                         try {

62                             Thread.sleep(50L);

63                         } catch (Exception e) {

64                         }

65                     }

66                 }

67             }.start();

68         }

69     }

70 }

71

 

注意,这里用到了《Google Guice 入门教程03 - 依赖注入》的中的两个类Service和WwwService。在本例中ThreadServiceScope类是一个与线程绑定的作用域(利用ThreadLocal特性),当当前线程中没有构造一个对象的时候先构造一个出来,然后放入线程上下文中,以后每次都从线程中获取对象。第50行是将WwwService服务以ThreadServiceScope的作用域绑定到Service服务上。第57-60行输出当前对象的hashCode,如果此类是同一对象的话就应该输出相同的hashCode。为了看到效果,我们使用3个线程,每个线程输出三次来看结果。

 

Thread-0-0:18303751

Thread-1-0:23473608

Thread-2-0:21480956

Thread-1-1:23473608

Thread-0-1:18303751

Thread-2-1:21480956

Thread-1-2:23473608

Thread-2-2:21480956

Thread-0-2:18303751

 

我们看到对于同一个线程(比如说Thread-0)的三次都输出了相同的对象(hashCode为18303751),而与线程2和线程3的hashCode不同。

 

(特别说明:如果两个线程输出了同一个hashCode不必惊慌,那是因为可能前一个线程生成的对象的地址空间被GC释放了,结果下一个线程使用了上一个线程的相同空间,所以这里使用Thread.sleep来降低这种可能性)

 

 

事实上在guice-servlet-2.0.jar中有与request和session绑定的scope。

 

com.google.inject.servlet.ServletScopes.REQUEST

com.google.inject.servlet.ServletScopes.SESSION

 

1.3.6 Eagerly Loading Bindings (立即初始化)

 

 

除了可以绑定scope外,对象默认在第一次调用时被创建,也即所谓的延时加载,Guice也允许对象在注入到Guice容器中时就被创建出来(显然这是针对单例模式才有效)。

 

 1 public class EagerSingletonDemo {

 2 

 3     public EagerSingletonDemo() {

 4         System.out.println(" constuctor:"+System.nanoTime());

 5     }

 6     void doit() {

 7         System.out.println("       doit:"+System.nanoTime());

 8     }

 9     public static void main(String[] args) throws Exception{

10         Injector inj = Guice.createInjector(new Module() {

11             @Override

12             public void configure(Binder binder) {

13                 binder.bind(EagerSingletonDemo.class).asEagerSingleton();

14             }

15         });

16         System.out.println("before call:"+System.nanoTime());

17         Thread.sleep(100L);

18         inj.getInstance(EagerSingletonDemo.class).doit();

19     }

20 }

 

结果输出如下:

 

 constuctor:26996967388652

before call:26996967713635

       doit:26997069993702

 

可以看到我们的对象在调用getInstance之前就已经被构造出来了。

 

 

1.3.7 Stages (运行阶段)

 

Guice还有一个特效,可以指定Guice运行模式来控制Guice的加载速度。在com.google.inject.Stage枚举中提供了TOOL,DEVELOPMENT,PRODUCTION三种模式。

 

TOOL描述的是带有IDE等插件的运行模式;DEVELOPMENT是指在开发阶段只加载自己需要的功能(对于非立即初始化单例对象采用延后加载),这样来降低加载不需要功能的时间;而PRODUCTION模式是指完全加载所有功能(对于单例对象采用立即加载方式),这样可以更早的发现问题,免得等需要某些功能的时候才发现问题(要知道我们某些功能可能需要特定的条件才能触发)。

 

其实只有比较多的单例对象,并且单例对象构造比较耗时的情况下才能有用。大部分情况下这点性能可能都忽略不计了。

 

 

默认情况下Guice采用DEVELOPMENT模式。

 

 

 

 

 

1.3.8 Optional Injection (选项注入 )

 

选项注入描述的是如果不能从Guice容器中注入一个对象,那么可以使用一个默认的对象。看下面的例子。

 

 

 1 public class OptionalInjectionDemo {

 2     @Inject(optional=true)

 3     Service service = new WwwService();

 4     public static void main(String[] args) {

 5         Guice.createInjector(new Module() {

 6             public void configure(Binder binder) {

 7                 //binder.bind(Service.class).to(HomeService.class);

 8             }

 9         }).getInstance(OptionalInjectionDemo.class).service.execute();

10     }

11 }

 

上述例子中第2行描述的是选项注入,如果不能从Guice容器中获取一个Service服务那么就使用默认的WwwService,否则就是用获取的服务。如果将第7行注释去掉我们就可以看到实际上调用的是HomeService服务了。

相关文章
|
7月前
|
XML Java 程序员
Spring6框架中依赖注入的多种方式(推荐构造器注入)
依赖注入(DI)是一种过程,对象通过构造函数参数、工厂方法的参数或在对象实例构建后设置的属性来定义它们的依赖关系(即与其一起工作的其他对象)。
94 3
|
7月前
|
XML Java 数据格式
Spring框架入门:IoC与DI
【5月更文挑战第15天】本文介绍了Spring框架的核心特性——IoC(控制反转)和DI(依赖注入)。IoC通过将对象的创建和依赖关系管理交给容器,实现解耦。DI作为IoC的实现方式,允许外部注入依赖对象。文章讨论了过度依赖容器、配置复杂度等常见问题,并提出通过合理划分配置、使用注解简化管理等解决策略。同时,提醒开发者注意过度依赖注入和循环依赖,建议适度使用构造器注入和避免循环引用。通过代码示例展示了注解实现DI和配置类的使用。掌握IoC和DI能提升应用的灵活性和可维护性,实践中的反思和优化至关重要。
388 4
|
4月前
|
设计模式 Java Spring
依赖注入(DI)及其三个类
【8月更文挑战第24天】
44 0
|
7月前
|
Java Spring 容器
Spring核心概念、IoC和DI的认识、Spring中bean的配置及实例化、bean的生命周期
Spring核心概念、IoC和DI的认识、Spring中bean的配置及实例化、bean的生命周期
54 0
|
XML Java 测试技术
springIOC(控制反转)和DI(依赖注入)
springIOC(控制反转)和DI(依赖注入)
73 0
|
7月前
|
XML 缓存 Java
Spring5源码(9)-Bean的作用域和生命周期
Spring5源码(9)-Bean的作用域和生命周期
50 0
|
7月前
|
XML Java 数据格式
深入了解 Spring Boot 核心特性、注解和 Bean 作用域
Spring Boot 是基于 Spring Framework 构建应用程序的框架,Spring Framework 是一个广泛使用的用于构建基于 Java 的企业应用程序的开源框架。Spring Boot 旨在使创建独立的、生产级别的 Spring 应用程序变得容易,您可以"只是运行"这些应用程序。
126 0
|
XML IDE Java
【Spring框架三】——Spirng IOC和DI的实现
【Spring框架三】——Spirng IOC和DI的实现
75 0
|
设计模式 中间件 容器
小满nestjs(第二章 IOC控制反转 DI依赖注入)
Inversion of Control字面意思是控制反转,具体定义是高层模块不应该依赖低层模块,二者都应该依赖其抽象;抽象不应该依赖细节;细节应该依赖抽象。
134 0
|
XML 设计模式 Java
简单理解什么是Spring中的IOC控制反转和DI依赖注入,Spring对象的三种创建方式
简单理解什么是Spring中的IOC控制反转和DI依赖注入,Spring对象的三种创建方式
159 0
简单理解什么是Spring中的IOC控制反转和DI依赖注入,Spring对象的三种创建方式