SQL优化:化解表关联的多对多join

简介:

关系数据库的基本概念就是关系,对应到数据库软件中就是join,具体有:(1对1,1对多,多对多)。

在写sql时,经常会进行join,但是如果在join时没注意,关联条件是多对多,那么数据量就会成几何级数的增长,接下来又进行了group by,去除重复,真是吃力不讨好,曾经写过一个sql,运行需要7分钟,在修改之后,只需要10秒。。。


昨天写了一个存储过程,写好后发现非常慢,但是当前系统里的数据量就几十万条,数据量是比较小的。

代码如下:


 
  • declare @biz_date varchar(7)

    set @biz_date = '2016-10'

    select '达成率' kpi,
    4 as sort,
    v.emp_id,
    count(distinct v.store_id)*1.0/nullif(count(distinct m.store_id),0) v
    FROM TB_CALL_PLAN v with(nolock)
    inner  join TB_STORE m with(nolock)
         on m.org_id = v.org_id and m.state = '1'
    WHERE   v.business_date LIKE @BIZ_DATE+'%'
    group by V.EMP_ID


这段代码运行时间是1分17秒,要计算某个人员的 达成率,逻辑也是很简单,其中的2个表是多对多的关系。


仔细想想慢可能是由于这种多对多的关系,一下子把数据集放大了好多倍,最后又通过group by 来去重 count(distinct store_id),所以就慢了。

于是修改了代码:


 
  • declare @biz_date varchar(7)

    set @biz_date = '2016-10'

    select '达成率' kpi,
    4 as sort,
    v.emp_id,
    count(distinct v.store_id)*1.0/nullif(c,0) v
    FROM TB_CALL_PLAN v with(nolock)
    inner  join 
    (
    select m.org_id,
    count(*) as c
    from TB_STORE m with(nolock)
    where m.state = '1'
    group by m.org_id
    )m
    on m.org_id = v.org_id
    WHERE v.business_date LIKE @BIZ_DATE+'%'
    group by V.EMP_ID,c

这段代码从表面看,好像是比最初的代码要复杂了,现在内部聚合tb_store的数据,然后再和外面的v表关联,但一个好处是对应关系变成了多对一的关系,也就是m的一个org_id对应多个v中的org_id,先把一个表的数据量通过group by缩小,然后再关联,这样关联数据就不会太多。


这么修改代码,运行时间降为0秒,实则是化繁为简。















本文转自51GT51CTO博客,原文链接: http://blog.51cto.com/yataigp/1950682 ,如需转载请自行联系原作者

相关文章
|
1月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
139 6
|
9月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
6月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
8月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
9月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
393 9
|
10月前
|
SQL Oracle 关系型数据库
如何在 Oracle 中配置和使用 SQL Profiles 来优化查询性能?
在 Oracle 数据库中,SQL Profiles 是优化查询性能的工具,通过提供额外统计信息帮助生成更有效的执行计划。配置和使用步骤包括:1. 启用自动 SQL 调优;2. 手动创建 SQL Profile,涉及收集、执行调优任务、查看报告及应用建议;3. 验证效果;4. 使用 `DBA_SQL_PROFILES` 视图管理 Profile。
|
11月前
|
SQL Oracle 数据库
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
258 11
|
10月前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
1201 0
|
12月前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
12月前
|
SQL 数据库
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化