MySQL数据库高并发优化配置

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:
在Apache, PHP, mysql的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分。对于Discuz!论坛程序也是如此,MySQL的设置是否合理优化,直接 影响到论坛的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识,同时还需要长时间的观察统计并且根据经验 进行判断,然后设置合理的参数。
 
  下面我们了解一下MySQL优化的一些基础,MySQL的优化我分为两个部分,一是服务器物理硬件的优化,二是MySQL自身(my.cnf)的优化。
 
一、服务器硬件对MySQL性能的影响
 
① 磁盘寻道能力(磁盘I/O),以目前高转速SCSI硬盘(7200转/秒)为例,这种硬盘理论上每秒寻道7200次,这是物理特性决定的,没有办法改变。 MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访问量 在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案:  使用RAID-0+1磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。
 
②CPU 对于MySQL应用,推荐使用S.M.P.架构的多路对称CPU,例如:可以使用两颗Intel Xeon 3.6GHz的CPU,现在我较推荐用4U的服务器来专门做数据库服务器,不仅仅是针对于mysql。
 
③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到了高端服务器基本上内存都超过了16G。
 
二、 MySQL自身因素
 
当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。对MySQL自身的优化主要是对其配置文件 my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。  由于my.cnf文件的优化设置是与服务器硬件配置息息相关的,因而我们指定一个假想的服务器硬件环境:
 
下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:
 
 
#vim /etc/my.cnf以下只列出my.cnf文件中[mysqld]段落中的内容,其他段落内容对MySQL运行性能影响甚微,因而姑且忽略。
  代码如下   复制代码
[mysqld]
port = 3306
serverid = 1
socket = /tmp/mysql.sock
skip-locking
#避免MySQL的外部锁定,减少出错几率增强稳定性。
skip-name-resolve
#禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
back_log = 384
#back_log 参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。  如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自 己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。
key_buffer_size = 256M
#key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!
max_allowed_packet = 4M
thread_stack = 256K
table_cache = 128K
sort_buffer_size = 6M
#查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。
read_buffer_size = 4M
#读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
join_buffer_size = 8M
#联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
myisam_sort_buffer_size = 64M
table_cache = 512
thread_cache_size = 64
query_cache_size = 64M
# 指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的 情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓 冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。
tmp_table_size = 256M
max_connections = 768
#指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。
max_connect_errors = 10000000
wait_timeout = 10
#指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。
thread_concurrency = 8
#该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8
skip-networking
#开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!
table_cache=1024
#物理内存越大,设置就越大.默认为2402,调到512-1024最佳
innodb_additional_mem_pool_size=4M
#默认为2M
innodb_flush_log_at_trx_commit=1
#设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1
innodb_log_buffer_size=2M
#默认为1M
innodb_thread_concurrency=8
#你的服务器CPU有几个就设置为几,建议用默认一般为8
key_buffer_size=256M
#默认为218,调到128最佳
tmp_table_size=64M
#默认为16M,调到64-256最挂
read_buffer_size=4M
#默认为64K
read_rnd_buffer_size=16M
#默认为256K
sort_buffer_size=32M
#默认为256K
thread_cache_size=120
#默认为60
query_cache_size=32M
 
 
如果从数据库平台应用出发,我还是会首选myisam.
 
PS:可能有人会说你myisam无法抗太多写操作,但是我可以通过架构来弥补,说个我现有用的数据库平台容量:主从数据总量在几百T以上,每天十多亿 pv的动态页面,还有几个大项目是通过数据接口方式调用未算进pv总数,(其中包括一个大项目因为初期memcached没部署,导致单台数据库每天处理 9千万的查询)。而我的整体数据库服务器平均负载都在0.5-1左右。
 
MyISAM和InnoDB优化:
 
key_buffer_size – 这对MyISAM表来说非常重要。如果只是使用MyISAM表,可以把它设置为可用内存的 30-40%。合理的值取决于索引大小、数据量以及负载 — 记住,MyISAM表会使用操作系统的缓存来缓存数据,因此需要留出部分内存给它们,很多情况下数据比索引大多了。尽管如此,需要总是检查是否所有的 key_buffer 都被利用了 — .MYI 文件只有 1GB,而 key_buffer 却设置为 4GB 的情况是非常少的。这么做太浪费了。如果你很少使用MyISAM表,那么也保留低于 16-32MB 的 key_buffer_size 以适应给予磁盘的临时表索引所需。
 
innodb_buffer_pool_size – 这对Innodb表来说非常重要。Innodb相比MyISAM表对缓冲更为敏感。MyISAM可以在默认的 key_buffer_size 设置下运行的可以,然而Innodb在默认的 innodb_buffer_pool_size 设置下却跟蜗牛似的。由于Innodb把数据和索引都缓存起来,无需留给操作系统太多的内存,因此如果只需要用Innodb的话则可以设置它高达 70-80% 的可用内存。一些应用于 key_buffer 的规则有 — 如果你的数据量不大,并且不会暴增,那么无需把 innodb_buffer_pool_size 设置的太大了。
 
innodb_additional_pool_size – 这个选项对性能影响并不太多,至少在有差不多足够内存可分配的操作系统上是这样。不过如果你仍然想设置为 20MB(或者更大),因此就需要看一下Innodb其他需要分配的内存有多少。
 
innodb_log_file_size 在高写入负载尤其是大数据集的情况下很重要。这个值越大则性能相对越高,但是要注意到可能会增加恢复时间。我经常设置为 64-512MB,跟据服务器大小而异。
 
innodb_log_buffer_size 默 认的设置在中等强度写入负载以及较短事务的情况下,服务器性能还可 以。如果存在更新操作峰值或者负载较大,就应该考虑加大它的值了。如果它的值设置太高了,可能会浪费内存 — 它每秒都会刷新一次,因此无需设置超过1秒所需的内存空间。通常 8-16MB 就足够了。越小的系统它的值越小。
 
innodb_flush_logs_at_trx_commit 是否为Innodb比MyISAM慢1000倍而头大?看来也许你忘了修改这个参数了。默认值是 1,这意味着每次提交的更新事务(或者每个事务之外的语句)都会刷新到磁盘中,而这相当耗费资源,尤其是没有电池备用缓存时。很多应用程序,尤其是从 MyISAM转变过来的那些,把它的值设置为 2 就可以了,也就是不把日志刷新到磁盘上,而只刷新到操作系统的缓存上。日志仍然会每秒刷新到磁盘中去,因此通常不会丢失每秒1-2次更新的消耗。如果设置 为 0 就快很多了,不过也相对不安全了 — MySQL服务器崩溃时就会丢失一些事务。设置为 2 指挥丢失刷新到操作系统缓存的那部分事务。
 
table_cache — 打开一个表的开销可能很大。例如MyISAM把MYI文件头标志该表正在使用中。你肯定不希望这种操作太频繁,所以通常要加大缓存数量,使得足以最大限度 地缓存打开的表。它需要用到操作系统的资源以及内存,对当前的硬件配置来说当然不是什么问题了。如果你有200多个表的话,那么设置为 1024 也许比较合适(每个线程都需要打开表),如果连接数比较大那么就加大它的值。我曾经见过设置为 100,000 的情况。
 
thread_cache — 线程的创建和销毁的开销可能很大,因为每个线程的连接/断开都需要。我通常至少设置为 16。如果应用程序中有大量的跳跃并发连接并且 Threads_Created 的值也比较大,那么我就会加大它的值。它的目的是在通常的操作中无需创建新线程。
 
query_cache — 如果你的应用程序有大量读,而且没有应用程序级别的缓存,那么这很有用。不要把它设置太大了,因为想要维护它也需要不少开销,这会导致MySQL变慢。通 常设置为 32-512Mb。设置完之后最好是跟踪一段时间,查看是否运行良好。在一定的负载压力下,如果缓存命中率太低了,就启用它。
 
sort_buffer_size –如果你只有一些简单的查询,那么就无需增加它的值了,尽管你有 64GB 的内存。搞不好也许会降低性能。


转自:http://www.cnblogs.com/musings/p/5913157.html


本文转自 holy2009 51CTO博客,原文链接:http://blog.51cto.com/holy2010/1955333


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
18天前
|
存储 监控 安全
数据库多实例的部署与配置方法
【10月更文挑战第23天】数据库多实例的部署和配置需要综合考虑多个因素,包括硬件资源、软件设置、性能优化、安全保障等。通过合理的部署和配置,可以充分发挥多实例的优势,提高数据库系统的运行效率和可靠性。在实际操作中,要不断总结经验,根据实际情况进行调整和优化,以适应不断变化的业务需求。
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
11天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
33 9
|
11天前
|
安全 Nacos 数据库
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改
Nacos是一款流行的微服务注册与配置中心,但直接暴露在公网中可能导致非法访问和数据库篡改。本文详细探讨了这一问题的原因及解决方案,包括限制公网访问、使用HTTPS、强化数据库安全、启用访问控制、监控和审计等步骤,帮助开发者确保服务的安全运行。
24 3
|
12天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
39 3
|
14天前
|
PHP 数据库 数据安全/隐私保护
布谷直播源码部署服务器关于数据库配置的详细说明
布谷直播系统源码搭建部署时数据库配置明细!
|
14天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
38 1
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
82 1
|
17天前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
37 2
|
17天前
|
存储 SQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(1)作者——LJS[含MySQL的下载、安装、配置详解步骤及报错对应解决方法]
Mysql And Redis基础与进阶操作系列(1)之[MySQL的下载、安装、配置详解步骤及报错对应解决方法]

热门文章

最新文章

  • 1
    高并发场景下,到底先更新缓存还是先更新数据库?
    67
  • 2
    Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
    74
  • 3
    Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
    68
  • 4
    Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
    62
  • 5
    Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
    55
  • 6
    Java面试题:假设你正在开发一个Java后端服务,该服务需要处理高并发的用户请求,并且对内存使用效率有严格的要求,在多线程环境下,如何确保共享资源的线程安全?
    69
  • 7
    在Java中实现高并发的数据访问控制
    42
  • 8
    使用Java构建一个高并发的网络服务
    29
  • 9
    微服务06----Eureka注册中心,微服务的两大服务,订单服务和用户服务,订单服务需要远程调用我们的用,户服务,消费者,如果环境改变,硬编码问题就会随之产生,为了应对高并发,我们可能会部署成一个集
    37
  • 10
    如何设计一个秒杀系统,(高并发高可用分布式集群)
    129