MySQL数据库高并发优化配置

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介:
在Apache, PHP, mysql的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分。对于Discuz!论坛程序也是如此,MySQL的设置是否合理优化,直接 影响到论坛的速度和承载量!同时,MySQL也是优化难度最大的一个部分,不但需要理解一些MySQL专业知识,同时还需要长时间的观察统计并且根据经验 进行判断,然后设置合理的参数。
 
  下面我们了解一下MySQL优化的一些基础,MySQL的优化我分为两个部分,一是服务器物理硬件的优化,二是MySQL自身(my.cnf)的优化。
 
一、服务器硬件对MySQL性能的影响
 
① 磁盘寻道能力(磁盘I/O),以目前高转速SCSI硬盘(7200转/秒)为例,这种硬盘理论上每秒寻道7200次,这是物理特性决定的,没有办法改变。 MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访问量 在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案:  使用RAID-0+1磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。
 
②CPU 对于MySQL应用,推荐使用S.M.P.架构的多路对称CPU,例如:可以使用两颗Intel Xeon 3.6GHz的CPU,现在我较推荐用4U的服务器来专门做数据库服务器,不仅仅是针对于mysql。
 
③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到了高端服务器基本上内存都超过了16G。
 
二、 MySQL自身因素
 
当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。对MySQL自身的优化主要是对其配置文件 my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。  由于my.cnf文件的优化设置是与服务器硬件配置息息相关的,因而我们指定一个假想的服务器硬件环境:
 
下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:
 
 
#vim /etc/my.cnf以下只列出my.cnf文件中[mysqld]段落中的内容,其他段落内容对MySQL运行性能影响甚微,因而姑且忽略。
  代码如下   复制代码
[mysqld]
port = 3306
serverid = 1
socket = /tmp/mysql.sock
skip-locking
#避免MySQL的外部锁定,减少出错几率增强稳定性。
skip-name-resolve
#禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
back_log = 384
#back_log 参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。  如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自 己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。
key_buffer_size = 256M
#key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!
max_allowed_packet = 4M
thread_stack = 256K
table_cache = 128K
sort_buffer_size = 6M
#查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。
read_buffer_size = 4M
#读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
join_buffer_size = 8M
#联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
myisam_sort_buffer_size = 64M
table_cache = 512
thread_cache_size = 64
query_cache_size = 64M
# 指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的 情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓 冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。
tmp_table_size = 256M
max_connections = 768
#指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。
max_connect_errors = 10000000
wait_timeout = 10
#指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。
thread_concurrency = 8
#该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8
skip-networking
#开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!
table_cache=1024
#物理内存越大,设置就越大.默认为2402,调到512-1024最佳
innodb_additional_mem_pool_size=4M
#默认为2M
innodb_flush_log_at_trx_commit=1
#设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1
innodb_log_buffer_size=2M
#默认为1M
innodb_thread_concurrency=8
#你的服务器CPU有几个就设置为几,建议用默认一般为8
key_buffer_size=256M
#默认为218,调到128最佳
tmp_table_size=64M
#默认为16M,调到64-256最挂
read_buffer_size=4M
#默认为64K
read_rnd_buffer_size=16M
#默认为256K
sort_buffer_size=32M
#默认为256K
thread_cache_size=120
#默认为60
query_cache_size=32M
 
 
如果从数据库平台应用出发,我还是会首选myisam.
 
PS:可能有人会说你myisam无法抗太多写操作,但是我可以通过架构来弥补,说个我现有用的数据库平台容量:主从数据总量在几百T以上,每天十多亿 pv的动态页面,还有几个大项目是通过数据接口方式调用未算进pv总数,(其中包括一个大项目因为初期memcached没部署,导致单台数据库每天处理 9千万的查询)。而我的整体数据库服务器平均负载都在0.5-1左右。
 
MyISAM和InnoDB优化:
 
key_buffer_size – 这对MyISAM表来说非常重要。如果只是使用MyISAM表,可以把它设置为可用内存的 30-40%。合理的值取决于索引大小、数据量以及负载 — 记住,MyISAM表会使用操作系统的缓存来缓存数据,因此需要留出部分内存给它们,很多情况下数据比索引大多了。尽管如此,需要总是检查是否所有的 key_buffer 都被利用了 — .MYI 文件只有 1GB,而 key_buffer 却设置为 4GB 的情况是非常少的。这么做太浪费了。如果你很少使用MyISAM表,那么也保留低于 16-32MB 的 key_buffer_size 以适应给予磁盘的临时表索引所需。
 
innodb_buffer_pool_size – 这对Innodb表来说非常重要。Innodb相比MyISAM表对缓冲更为敏感。MyISAM可以在默认的 key_buffer_size 设置下运行的可以,然而Innodb在默认的 innodb_buffer_pool_size 设置下却跟蜗牛似的。由于Innodb把数据和索引都缓存起来,无需留给操作系统太多的内存,因此如果只需要用Innodb的话则可以设置它高达 70-80% 的可用内存。一些应用于 key_buffer 的规则有 — 如果你的数据量不大,并且不会暴增,那么无需把 innodb_buffer_pool_size 设置的太大了。
 
innodb_additional_pool_size – 这个选项对性能影响并不太多,至少在有差不多足够内存可分配的操作系统上是这样。不过如果你仍然想设置为 20MB(或者更大),因此就需要看一下Innodb其他需要分配的内存有多少。
 
innodb_log_file_size 在高写入负载尤其是大数据集的情况下很重要。这个值越大则性能相对越高,但是要注意到可能会增加恢复时间。我经常设置为 64-512MB,跟据服务器大小而异。
 
innodb_log_buffer_size 默 认的设置在中等强度写入负载以及较短事务的情况下,服务器性能还可 以。如果存在更新操作峰值或者负载较大,就应该考虑加大它的值了。如果它的值设置太高了,可能会浪费内存 — 它每秒都会刷新一次,因此无需设置超过1秒所需的内存空间。通常 8-16MB 就足够了。越小的系统它的值越小。
 
innodb_flush_logs_at_trx_commit 是否为Innodb比MyISAM慢1000倍而头大?看来也许你忘了修改这个参数了。默认值是 1,这意味着每次提交的更新事务(或者每个事务之外的语句)都会刷新到磁盘中,而这相当耗费资源,尤其是没有电池备用缓存时。很多应用程序,尤其是从 MyISAM转变过来的那些,把它的值设置为 2 就可以了,也就是不把日志刷新到磁盘上,而只刷新到操作系统的缓存上。日志仍然会每秒刷新到磁盘中去,因此通常不会丢失每秒1-2次更新的消耗。如果设置 为 0 就快很多了,不过也相对不安全了 — MySQL服务器崩溃时就会丢失一些事务。设置为 2 指挥丢失刷新到操作系统缓存的那部分事务。
 
table_cache — 打开一个表的开销可能很大。例如MyISAM把MYI文件头标志该表正在使用中。你肯定不希望这种操作太频繁,所以通常要加大缓存数量,使得足以最大限度 地缓存打开的表。它需要用到操作系统的资源以及内存,对当前的硬件配置来说当然不是什么问题了。如果你有200多个表的话,那么设置为 1024 也许比较合适(每个线程都需要打开表),如果连接数比较大那么就加大它的值。我曾经见过设置为 100,000 的情况。
 
thread_cache — 线程的创建和销毁的开销可能很大,因为每个线程的连接/断开都需要。我通常至少设置为 16。如果应用程序中有大量的跳跃并发连接并且 Threads_Created 的值也比较大,那么我就会加大它的值。它的目的是在通常的操作中无需创建新线程。
 
query_cache — 如果你的应用程序有大量读,而且没有应用程序级别的缓存,那么这很有用。不要把它设置太大了,因为想要维护它也需要不少开销,这会导致MySQL变慢。通 常设置为 32-512Mb。设置完之后最好是跟踪一段时间,查看是否运行良好。在一定的负载压力下,如果缓存命中率太低了,就启用它。
 
sort_buffer_size –如果你只有一些简单的查询,那么就无需增加它的值了,尽管你有 64GB 的内存。搞不好也许会降低性能。


转自:http://www.cnblogs.com/musings/p/5913157.html


本文转自 holy2009 51CTO博客,原文链接:http://blog.51cto.com/holy2010/1955333


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
29天前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
1月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
122 6
|
2月前
|
Ubuntu 安全 关系型数据库
安装与配置MySQL 8 on Ubuntu,包括权限授予、数据库备份及远程连接指南
以上步骤提供了在Ubuntu上从头开始设置、配置、授权、备份及恢复一个基础但完整的MySQL环境所需知识点。
336 7
|
2月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
435 4
|
2月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
300 11
|
3月前
|
运维 监控 Kubernetes
高并发来了,运维别慌:如何优化运维流程,才能稳住阵脚?
高并发来了,运维别慌:如何优化运维流程,才能稳住阵脚?
111 4
|
3月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
153 6
|
2月前
|
数据采集 网络协议 API
协程+连接池:高并发Python爬虫的底层优化逻辑
协程+连接池:高并发Python爬虫的底层优化逻辑
|
4月前
|
缓存 关系型数据库 MySQL
在MySQL中处理高并发和负载峰值的关键技术与策略
采用上述策略和技术时,每个环节都要进行细致的规划和测试,确保数据库系统既能满足高并发的要求,又要保持足够的灵活性来应对各种突发的流量峰值。实施时,合理评估和测试改动对系统性能的影响,避免单一措施可能引起的连锁反应。持续的系统监控和分析将对维护系统稳定性和进行未来规划提供重要信息。
212 15

热门文章

最新文章

推荐镜像

更多