用 Python 脚本实现对 Linux 服务器的监控

简介:

目 前 Linux 下有一些使用 Python 语言编写的 Linux 系统监控工具 比如 inotify-sync(文件系统安全监控软件)、glances(资源监控工具)在实际工作中,Linux 系统管理员可以根据自己使用的服务器的具体情况编写一下简单实用的脚本实现对 Linux 服务器的监控。 本文介绍一下使用 Python 脚本实现对 Linux 服务器 CPU 内存 网络的监控脚本的编写。

Python 版本说明

Python 是由 Guido van Rossum 开发的、可免费获得的、非常高级的解释型语言。其语法简单易懂,而其面向对象的语义功能强大(但又灵活)。Python 可以广泛使用并具有高度的可移植性。本文 Linux 服务器是 Ubuntu 12.10, Python 版本 是 2.7 。如果是 Python 3.0 版本的语法上有一定的出入。另外这里笔者所说的 Python 是 CPython,CPython 是用 C 语言实现的 Python 解释器,也是官方的并且是最广泛使用的Python 解释器。除了 CPython 以外,还有用 Java 实现的 Jython 和用.NET 实现的 IronPython,使 Python方便地和 Java 程序、.NET 程序集成。另外还有一些实验性的 Python 解释器比如 PyPy。CPython 是使用字节码的解释器,任何程序源代码在执行之前先要编译成字节码。它还有和几种其它语言(包括 C 语言)交互的外部函数接口。

工作原理:基于/proc 文件系统

Linux 系统为管理员提供了非常好的方法,使其可以在系统运行时更改内核,而不需要重新引导内核系统,这是通过/proc 虚拟文件系统实现的。/proc 文件虚拟系统是一种内核和内核模块用来向进程(process)发送信息的机制(所以叫做“/proc”),这个伪文件系统允许与内核内部数据结构交互, 获取有关进程的有用信息,在运行中(on the fly)改变设置(通过改变内核参数)。与其他文件系统不同,/proc 存在于内存而不是硬盘中。proc 文件系统提供的信息如下:

  • 进程信息:系统中的任何一个进程,在 proc 的子目录中都有一个同名的进程 ID,可以找到 cmdline、mem、root、stat、statm,以及 status。某些信息只有超级用户可见,例如进程根目录。每一个单独含有现有进程信息的进程有一些可用的专门链接,系统中的任何一个进程都有一个单独的 自链接指向进程信息,其用处就是从进程中获取命令行信息。

  • 系统信息:如果需要了解整个系统信息中也可以从/proc/stat 中获得,其中包括 CPU 占用情况、磁盘空间、内存对换、中断等。

  • CPU 信息:利用/proc/CPUinfo 文件可以获得中央处理器的当前准确信息。

  • 负载信息:/proc/loadavg 文件包含系统负载信息。

  • 系统内存信息:/proc/meminfo 文件包含系统内存的详细信息,其中显示物理内存的数量、可用交换空间的数量,以及空闲内存的数量等。

表 1 是 /proc 目录中的主要文件的说明:

表 1 /proc 目录中的主要文件的说明
文件或目录名称 描 述
apm 高级电源管理信息
cmdline 这个文件给出了内核启动的命令行
CPUinfo 中央处理器信息
devices 可以用到的设备(块设备/字符设备)
dma 显示当前使用的 DMA 通道
filesystems 核心配置的文件系统
ioports 当前使用的 I/O 端口
interrupts 这个文件的每一行都有一个保留的中断
kcore 系统物理内存映像
kmsg 核心输出的消息,被送到日志文件
mdstat 这个文件包含了由 md 设备驱动程序控制的 RAID 设备信息
loadavg 系统平均负载均衡
meminfo 存储器使用信息,包括物理内存和交换内存
modules 这个文件给出可加载内核模块的信息。lsmod 程序用这些信息显示有关模块的名称,大小,使用数目方面的信息
net 网络协议状态信息
partitions 系统识别的分区表
pci pci 设备信息
scsi scsi 设备信息
self 到查看/proc 程序进程目录的符号连接
stat 这个文件包含的信息有 CPU 利用率,磁盘,内存页,内存对换,全部中断,接触开关以及赏赐自举时间
swaps 显示的是交换分区的使用情况
uptime 这个文件给出自从上次系统自举以来的秒数,以及其中有多少秒处于空闲
version 这个文件只有一行内容,说明正在运行的内核版本。可以用标准的编程方法进行分析获得所需的系统信息

下面本文的几个例子都是使用 Python 脚本读取/proc 目录中的主要文件来实现实现对 Linux 服务器的监控的 。

使用 Python 脚本实现对 Linux 服务器的监控

对于 CPU(中央处理器)监测

脚本 1 名称 CPU1.py,作用获取 CPU 的信息。

清单 1.获取 CPU 的信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env Python
from  __future__  import  print_function
from  collections  import  OrderedDict
import  pprint
  
def  CPUinfo():
     ''' Return the information in /proc/CPUinfo
     as a dictionary in the following format:
     CPU_info['proc0']={...}
     CPU_info['proc1']={...}
     '''
     CPUinfo = OrderedDict()
     procinfo = OrderedDict()
  
     nprocs  =  0
     with  open ( '/proc/CPUinfo' ) as f:
         for  line  in  f:
             if  not  line.strip():
                 # end of one processor
                 CPUinfo[ 'proc%s'  %  nprocs]  =  procinfo
                 nprocs = nprocs + 1
                 # Reset
                 procinfo = OrderedDict()
             else :
                 if  len (line.split( ':' ))  = =  2 :
                     procinfo[line.split( ':' )[ 0 ].strip()]  =  line.split( ':' )[ 1 ].strip()
                 else :
                     procinfo[line.split( ':' )[ 0 ].strip()]  =  ''
  
     return  CPUinfo
  
if  __name__ = = '__main__' :
     CPUinfo  =  CPUinfo()
     for  processor  in  CPUinfo.keys():
         print (CPUinfo[processor][ 'model name' ])



简单说明一下清单 1,读取/proc/CPUinfo 中的信息,返回 list,每核心一个 dict。其中 list 是一个使用方括号括起来的有序元素集合。List 可以作为以 0 下标开始的数组。Dict 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系。OrderedDict 是一个字典子类,可以记住其内容增加的顺序。常规 dict 并不跟踪插入顺序,迭代处理时会根据键在散列表中存储的顺序来生成值。在 OrderedDict 中则相反,它会记住元素插入的顺序,并在创建迭代器时使用这个顺序。

可以使用 Python 命令运行脚本 CPU1.py 结果见图 1

Python

1

2

# Python CPU1.py

Intel(R) Celeron(R) CPU E3200  @ 2.40GHz

图 1.运行清单 1

ypjbsxdlfwqdjk01

也可以使用 chmod 命令添加权限收直接运行 CPU1.py

Python

1

2

#chmod +x CPU1.py

# ./CPU1.py

对于系统负载监测

脚本 2 名称 CPU2.py,作用获取系统的负载信息

清单 2 获取系统的负载信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#!/usr/bin/env Python   
import  os 
def  load_stat(): 
     loadavg  =  {} 
     =  open ( "/proc/loadavg"
     con  =  f.read().split() 
     f.close() 
     loadavg[ 'lavg_1' ] = con[ 0
     loadavg[ 'lavg_5' ] = con[ 1
     loadavg[ 'lavg_15' ] = con[ 2
     loadavg[ 'nr' ] = con[ 3
     loadavg[ 'last_pid' ] = con[ 4
     return  loadavg 
print  "loadavg" ,load_stat()[ 'lavg_15' ]



简单说明一下清单 2:清单 2 读取/proc/loadavg 中的信息,import os :Python 中 import 用于导入不同的模块,包括系统提供和自定义的模块。其基本形式为:import 模块名 [as 别名],如果只需要导入模块中的部分或全部内容可以用形式:from 模块名 import *来导入相应的模块。OS 模块 os 模块提供了一个统一的操作系统接口函数,os 模块能在不同操作系统平台如 nt,posix 中的特定函数间自动切换,从而实现跨平台操作。

可以使用 Python 命令运行脚本 CPU1.py 结果见图 2 # Python CPU2.py

图 2.运行清单 2

ypjbsxdlfwqdjk02

对于内存信息的获取

脚本 3 名称 mem.py,作用是获取内存使用情况信息

清单 3 获取内存使用情况
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env Python
  
from  __future__  import  print_function
from  collections  import  OrderedDict
  
def  meminfo():
     ''' Return the information in /proc/meminfo
     as a dictionary '''
     meminfo = OrderedDict()
  
     with  open ( '/proc/meminfo' ) as f:
         for  line  in  f:
             meminfo[line.split( ':' )[ 0 ]]  =  line.split( ':' )[ 1 ].strip()
     return  meminfo
  
if  __name__ = = '__main__' :
     #print(meminfo())
  
     meminfo  =  meminfo()
     print ( 'Total memory: {0}' . format (meminfo[ 'MemTotal' ]))
     print ( 'Free memory: {0}' . format (meminfo[ 'MemFree' ]))



简单说明一下清单 3:清单 3 读取 proc/meminfo 中的信息,Python 字符串的 split 方法是用的频率还是比较多的。比如我们需要存储一个很长的数据,并且按照有结构的方法存储,方便以后取数据进行处理。当然可以用 json 的形式。但是也可以把数据存储到一个字段里面,然后有某种标示符来分割。 Python 中的 strip 用于去除字符串的首位字符,最后清单 3 打印出内存总数和空闲数。

可以使用 Python 命令运行脚本 mem.py 结果见图 3。 # Python mem.py

图 3.运行清单 3

ypjbsxdlfwqdjk03

对于网络接口的监测

脚本 4 名称是 net.py,作用获取网络接口的使用情况。

清单 4 net.py 获取网络接口的输入和输出
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import  time
import  sys
  
if  len (sys.argv) >  1 :
     INTERFACE  =  sys.argv[ 1 ]
else :
     INTERFACE  =  'eth0'
STATS  =  []
print  'Interface:' ,INTERFACE
  
def     rx():
     ifstat  =  open ( '/proc/net/dev' ).readlines()
     for  interface  in   ifstat:
         if  INTERFACE  in  interface:
             stat  =  float (interface.split()[ 1 ])
             STATS[ 0 :]  =  [stat]
  
def     tx():
     ifstat  =  open ( '/proc/net/dev' ).readlines()
     for  interface  in   ifstat:
         if  INTERFACE  in  interface:
             stat  =  float (interface.split()[ 9 ])
             STATS[ 1 :]  =  [stat]
  
print     'In            Out'
rx()
tx()
  
while     True :
     time.sleep( 1 )
     rxstat_o  =  list (STATS)
     rx()
     tx()
     RX  =  float (STATS[ 0 ])
     RX_O  =  rxstat_o[ 0 ]
     TX  =  float (STATS[ 1 ])
     TX_O  =  rxstat_o[ 1 ]
     RX_RATE  =  round ((RX  -  RX_O) / 1024 / 1024 , 3 )
     TX_RATE  =  round ((TX  -  TX_O) / 1024 / 1024 , 3 )
     print  RX_RATE , 'MB        ' ,TX_RATE , 'MB'



简单说明一下清单 4:清单 4 读取/proc/net/dev 中的信息,Python 中文件操作可以通过 open 函数,这的确很像 C 语言中的 fopen。通过 open 函数获取一个 file object,然后调用 read(),write()等方法对文件进行读写操作。另外 Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: read()、readline() 和 readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for … in … 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。最后清单 4 打印出网络接口的输入和输出情况。

可以使用 Python 命令运行脚本 net.py 结果见图 4 #Python net.py

图 4.运行清单 4

ypjbsxdlfwqdjk04

监控 Apache 服务器进程的 Python 脚本

Apache 服务器进程可能会因为系统各种原因而出现异常退出,导致 Web 服务暂停。所以笔者写一个 Python 脚本文件:

清单 5 crtrl.py 监控 Apache 服务器进程的 Python 脚本
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env Python
# -*- coding:utf-8 -*-
import  os
import  sys
import  time
 
while  True :
     time.sleep( 4 )
     try :
         ret  =  os.popen( 'ps -C apache -o pid,cmd' ).readlines()
         if  len (ret)  = =  2 :
             print  "apache 服务已经启动"
             break
         if  len (ret) <  2 :
             print  "apache 进程异常退出, 4 秒后重新启动"
             time.sleep( 3 )
             os.system( "service apache restart" )
     except :
         print  "Error" , sys.exc_info()[ 1 ]



设置文件权限为执行属性(使用命令 chmod +x crtrl.py),然后加入到/etc/rc.local 即可,一旦 Apache 服务器进程异常退出,该脚本自动检查并且重启。 简单说明一下清单 5 这个脚本不是基于/proc 伪文件系统的,是基于 Python 自己提供的一些模块来实现的 。这里使用的是 Python 的内嵌 time 模板,time 模块提供各种操作时间的函数。

总结

在实际工作中,Linux 系统管理员可以根据自己使用的服务器的具体情况编写一下简单实用的脚本实现对 Linux 服务器的监控。本文介绍一下使用 Python 脚本实现对 Linux 服务器 CPU 、系统负载、内存和 网络使用情况的监控脚本的编写方法。



本文转自 326647452 51CTO博客,原文链接:http://blog.51cto.com/svsky/1925830,如需转载请自行联系原作者

相关文章
|
5天前
|
Shell Linux
【linux】Shell脚本中basename和dirname的详细用法教程
本文详细介绍了Linux Shell脚本中 `basename`和 `dirname`命令的用法,包括去除路径信息、去除后缀、批量处理文件名和路径等。同时,通过文件备份和日志文件分离的实践应用,展示了这两个命令在实际脚本中的应用场景。希望本文能帮助您更好地理解和应用 `basename`和 `dirname`命令,提高Shell脚本编写的效率和灵活性。
60 32
|
15天前
|
存储 Linux 网络安全
linux应急响应检查脚本
通过这个脚本,可以快速收集系统的关键信息,有助于在发生问题时进行及时的应急响应和分析。
74 34
|
27天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
2月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
207 7
|
2月前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
2月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
297 3
|
2月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
70 20
|
2月前
|
Linux Python
Linux 安装python3.7.6
本教程介绍在Linux系统上安装Python 3.7.6的步骤。首先使用`yum`安装依赖环境,包括zlib、openssl等开发库。接着通过`wget`下载Python 3.7.6源码包并解压。创建目标文件夹`/usr/local/python3`后,进入解压目录执行配置、编译和安装命令。最后设置软链接,使`python3`和`pip3`命令生效。
|
2月前
|
弹性计算 安全 开发工具
灵码评测-阿里云提供的ECS python3 sdk做安全组管理
批量变更阿里云ECS安全组策略(批量变更)
|
3月前
|
Ubuntu Linux Shell
Linux 系统中的代码类型或脚本类型内容
在 Linux 系统中,代码类型多样,包括 Shell 脚本、配置文件、网络配置、命令行工具和 Cron 定时任务。这些代码类型广泛应用于系统管理、自动化操作、网络配置和定期任务,掌握它们能显著提高系统管理和开发的效率。

热门文章

最新文章