Centos6.2系统下openstack--flat网络模式----->IP 注入问题

简介:        openstack现在是一个很热门的话题,版本的更新也很快,H版的部署文档官方已发布,前段时间刚刚测试了一下,不过其中有个小小的环节暂未搞定。本次要说的是openstack的E版本,我们是从这个版本开始进行研究修改的,所以以后涉及的相关操作都是基于这个版本的,在centos6.2操作系统上部署安装。
       openstack现在是一个很热门的话题,版本的更新也很快,H版的部署文档官方已发布,前段时间刚刚测试了一下,不过其中有个小小的环节暂未搞定。本次要说的是openstack的E版本,我们是从这个版本开始进行研究修改的,所以以后涉及的相关操作都是基于这个版本的,在centos6.2操作系统上部署安装。
      openstack最早是在ubuntu系统上部署的,通过官方文档或者其它相关介绍会发现大部分的应用部署都是在ubuntu操作系统上实现,既然是针对ubuntu的。那直接拿到Centos6.2上使用,多少就要进行一些改进,接下来的IP注入就是一例:

一、确定nova配置文件中,已正确配置flat网络模式
     
        #只列出关键配置
       
二、 nova api.py 配置文件的修改
      
      
三、 重启 nova-compute 服务,使刚才的修改生效

四、修改模板,并确认OK
   
    说明:这一步至关重要,否则无法注入IP
d饿

       以上操作完毕,即可实现Centos6.2下网卡IP的正常注入,如今的新版本也许已经解决了此问题。因为线上用的一直是E版本,所有的修改操作都是基于这个版本的。H版的功能已经有很大的改进,对于刚刚开始入门的,可以尝试看一下新版本,很希望跟各位博友交流经验,共同进步。

目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
45 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
机器学习/深度学习 编解码 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
38 4
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
11天前
|
监控 关系型数据库 MySQL
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
20 0
|
13天前
|
Linux 应用服务中间件 nginx
CentOS系统下的软件安装与卸载
CentOS系统中安装及卸载软件,常用yum命令安装及卸载软件包。yum是基于RPM的软件包管理器,可用于在CentOS中安装、更新、查询和移除软件包。yum命令可以从指定服务器下载rpm包并安装,能自动解决依赖问题。
123 78
|
13天前
|
机器学习/深度学习 编解码 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
42 8
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
158 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
132 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。