linux内核源码“双向链表list_head”续

简介:       上篇博文《linux内核源码“双向链表list_head”》中以一个实例介绍了list_head双向链表的用法,只有实例的代码,并没有list_head链表的代码,考虑到各位好学博友的强烈愿望,今天把list_head的代码即list.h头文件粘贴到此,供各位好学博友使用。
      上篇博文《 linux内核源码“双向链表list_head”》中以一个实例介绍了list_head双向链表的用法,只有实例的代码,并没有list_head链表的代码,考虑到各位好学博友的强烈愿望,今天把list_head的代码即list.h头文件粘贴到此,供各位好学博友使用。

一、list.h头文件源码
[root@bdkyr cstudy]# cat list.h             #list.h头文件
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#include

#undef offsetof
#ifdef __compiler_offsetof
#define offsetof(TYPE,MEMBER) __compiler_offsetof(TYPE,MEMBER)
#else
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif

#define container_of(ptr, type, member) ({                      \
        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
        (type *)( (char *)__mptr - offsetof(type,member) );})

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

struct list_head {
        struct list_head *next, *prev;
};

#define FLIST_HEAD_INIT(name) { &(name), &(name) }

#define FLIST_HEAD(name) \
        struct list_head name = FLIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { \
        (ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new_entry,
                               struct list_head *prev,
                               struct list_head *next)
{
        next->prev = new_entry;
        new_entry->next = next;
        new_entry->prev = prev;
        prev->next = new_entry;
}

/**
 * list_add - add a new entry
 * @new_entry: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new_entry,
                             struct list_head *head)
{
        __list_add(new_entry, head, head->next);
}

static inline void list_add_tail(struct list_head *new_entry,
                                  struct list_head *head)
{
        __list_add(new_entry, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev,
                               struct list_head * next)
{
        next->prev = prev;
        prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        entry->next = NULL;
        entry->prev = NULL;
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
        __list_del(entry->prev, entry->next);
        INIT_LIST_HEAD(entry);
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
        return head->next == head;
}

static inline void __list_splice(const struct list_head *list,
                                  struct list_head *prev,
                                  struct list_head *next)
{
        struct list_head *first = list->next;
        struct list_head *last = list->prev;

        first->prev = prev;
        prev->next = first;

        last->next = next;
        next->prev = last;
}

static inline void list_splice(const struct list_head *list,
                                struct list_head *head)
{
        if (!list_empty(list))
                __list_splice(list, head, head->next);
}

static inline void list_splice_init(struct list_head *list,
                                    struct list_head *head)
{
        if (!list_empty(list)) {
                __list_splice(list, head, head->next);
                INIT_LIST_HEAD(list);
        }
}

/**
 * list_entry - get the struct for this entry
 * @ptr:        the &struct list_head pointer.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
        container_of(ptr, type, member)

/**
 * list_for_each        -       iterate over a list
 * @pos:        the &struct list_head to use as a loop counter.
 * @head:       the head for your list.
 */
#define list_for_each(pos, head) \
        for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_safe   -       iterate over a list safe against removal of list entry
 * @pos:        the &struct list_head to use as a loop counter.
 * @n:          another &struct list_head to use as temporary storage
 * @head:       the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
        for (pos = (head)->next, n = pos->next; pos != (head); \
                pos = n, n = pos->next)

extern void list_sort(void *priv, struct list_head *head,
        int (*cmp)(void *priv, struct list_head *a, struct list_head *b));

#endif

二、编译double_list.c
[root@bdkyr cstudy]# gcc double_list.c -o double_list

三、运行
[root@bdkyr cstudy]# ./double_list                   
************遍历链表,打印结果**************
val = 1, num = 1
val = 2, num = 2
val = 3, num = 3
************删除节点b,重新遍历链表,打印结果*
val = 1, num = 1
val = 3, num = 3
************打印链表head1******************
val = 4, num = 4
val = 5, num = 5
*******************************************
the list is not empty!

如果博友觉得这个链表不错,可以参考测试实例,编写适合自己业务应用的代码,谢谢!
目录
相关文章
|
5天前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
15 1
|
2月前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
114 4
|
3月前
|
存储 Java
HashMap之链表转红黑树(树化 )-treefyBin方法源码解读(所有涉及到的方法均有详细解读,欢迎指正)
本文详细解析了Java HashMap中链表转红黑树的机制,包括树化条件(链表长度达8且数组长度≥64)及转换流程,确保高效处理大量数据。
113 1
|
2月前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
78 0
|
3月前
|
存储 编译器 C++
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
85 2
|
5月前
【数据结构】双向带头(哨兵位)循环链表 —详细讲解(赋源码)
【数据结构】双向带头(哨兵位)循环链表 —详细讲解(赋源码)
97 4
|
4月前
|
Linux
linux内核中的几种链表
linux内核中的几种链表
|
5月前
|
存储 测试技术
【初阶数据结构篇】单链表的实现(附源码)
在尾插/尾删中,都需要依据链表是否为空/链表是否多于一个节点来分情况讨论,目的是避免对空指针进行解引用造成的错误。
45 0
|
6月前
|
存储 C++
C++的list-map链表与映射表
```markdown C++ 中的`list`和`map`提供链表和映射表功能。`list`是双向链表,支持头尾插入删除(`push_front/push_back/pop_front/pop_back`),迭代器遍历及任意位置插入删除。`map`是键值对集合,自动按键排序,支持直接通过键来添加、修改和删除元素。两者均能使用范围for循环遍历,`map`的`count`函数用于统计键值出现次数。 ```
|
7月前
|
存储 C++
C++的list-map链表与映射表
这篇教程介绍了C++中`list`链表和`map`映射表的基本使用。`list`链表可通过`push_front()`、`push_back()`、`pop_front()`和`pop_back()`进行元素的添加和删除,使用迭代器遍历并支持在任意位置插入或删除元素。`map`是一个键值对的集合,元素自动按键值排序,可使用下标操作符或`insert()`函数插入元素,通过迭代器遍历并修改键值对,同时提供`count()`方法统计键值出现次数。教程中包含多个示例代码以帮助理解和学习。