HDFSSink组件中,主要由HDFSEventSink,BucketWriter,HDFSWriter几个类构成。

其中HDFSEventSink主要功能呢是判定Sink的配置条件是否合法,并负责从Channel中获取events,通过解析event的header信息决定event对应的BucketWriter。

BucketWriter负责按照rollCount,rollSize等条件在HDFS端生成(roll)文件,通过配置文件配置的文件数据格式以及序列化的方式,在每个BucetWriter同一处理。

HDFSWriter作为接口,其具体实现有HDFSSequenceFile,HDFSDataStream,HDFSCompressedDataStream这三种




HDFSSink功能中关键类类图

HdfsSink.png


HDFSEventSink类

走通HDFSEventSink之前,肯定要对其中配置参数有了解(Flume-HDFSSink配置参数说明)

1、configure()方法中,从配置文件中获取filePath,fileName等信息,具体参数含义可以参考(Flume-HDFSSink配置参数说明)


2、start()方法,初始化固定大小线程池callTimeoutPool, 周期执行线程池timedRollerPool,以及sfWriters,并启动sinkCounter

  1. callTimeoutPool

  2. timedRollerPool,周期执行线程池中主要有HDFS文件重命名的线程(根据retryInterval),达到生成文件要求进行roll操作的线程(根据idleTimeout),关闭闲置文件的线程等(rollInterval)

  3. sfWriters  sfWriters实际是一个LinkedHashMap的实现类,通过重写removeEldestEntry方法,将最久未使用的writer移除,保证sfWriters中能够维护一个固定大小(maxOpenFiles)的最大打开文件数

  4. sinkCounter sink组件监控指标的计数器


3、process() 方法是HDFSEventSink中最主要的逻辑(部分关键节点通过注释写到代码中),

  1. process()方法中获取到Channel,

  2. 并按照batchSize大小循环从Channel中获取event,通过解析event得到event的header等信息,确定该event的HDFS目的路径以及目的文件名

  3. 每个event可能对应不同的bucketWriter和hdfswriter,将每个event添加到相应的writer中

  4. 当event个数达到batchSize个数后,writer进行flush,同时提交事务

其中bucketWriter负责生成(roll)文件的方式,处理文件格式以及序列化等逻辑

其中hdfsWriter具体实现有"SequenceFile","DataStream","CompressedStream";三种,用户根据hdfs.fileType参数确定具体hdfsWriter的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
public  Status process()  throws  EventDeliveryException {
Channel channel = getChannel();  //调用父类getChannel方法,建立Channel与Sink之间的连接
Transaction transaction = channel.getTransaction(); //每次batch提交都建立在一个事务上
transaction.begin();
try  {
Set<BucketWriter> writers =  new  LinkedHashSet<>();
int  txnEventCount =  0 ;
for  (txnEventCount =  0 ; txnEventCount < batchSize; txnEventCount++) {
Event event = channel.take(); //从Channel中取出event
if  (event ==  null ) { //没有新的event的时候,则不需要按照batchSize循环取
break ;
}
// reconstruct the path name by substituting place holders
// 在配置文件中会有“a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S”这样的%表示的变量
// 解析配置文件中的变量构造realPath 和 realName
String realPath = BucketPath.escapeString(filePath, event.getHeaders(),
timeZone, needRounding, roundUnit, roundValue, useLocalTime);
String realName = BucketPath.escapeString(fileName, event.getHeaders(),
timeZone, needRounding, roundUnit, roundValue, useLocalTime);
String lookupPath = realPath + DIRECTORY_DELIMITER + realName;
BucketWriter bucketWriter;
HDFSWriter hdfsWriter =  null ;
WriterCallback closeCallback =  new  WriterCallback() {
@Override
public  void  run(String bucketPath) {
LOG.info( "Writer callback called." );
synchronized  (sfWritersLock) {
sfWriters.remove(bucketPath); //sfWriters以LRU方式维护了一个maxOpenFiles大小的map.始终保持最多打开文件个数
}
}
};
synchronized  (sfWritersLock) {
bucketWriter = sfWriters.get(lookupPath);
// we haven't seen this file yet, so open it and cache the handle
if  (bucketWriter ==  null ) {
hdfsWriter = writerFactory.getWriter(fileType); //通过工厂获取文件类型,其中包括"SequenceFile","DataStream","CompressedStream";
bucketWriter = initializeBucketWriter(realPath, realName,
lookupPath, hdfsWriter, closeCallback);
sfWriters.put(lookupPath, bucketWriter);
}
}
// Write the data to HDFS
try  {
bucketWriter.append(event);
catch  (BucketClosedException ex) {
LOG.info( "Bucket was closed while trying to append, "  +
"reinitializing bucket and writing event." );
hdfsWriter = writerFactory.getWriter(fileType);
bucketWriter = initializeBucketWriter(realPath, realName,
lookupPath, hdfsWriter, closeCallback);
synchronized  (sfWritersLock) {
sfWriters.put(lookupPath, bucketWriter);
}
bucketWriter.append(event);
}
// track the buckets getting written in this transaction
if  (!writers.contains(bucketWriter)) {
writers.add(bucketWriter);
}
}
if  (txnEventCount ==  0 ) {
sinkCounter.incrementBatchEmptyCount();
else  if  (txnEventCount == batchSize) {
sinkCounter.incrementBatchCompleteCount();
else  {
sinkCounter.incrementBatchUnderflowCount();
}
// flush all pending buckets before committing the transaction
for  (BucketWriter bucketWriter : writers) {
bucketWriter.flush();
}
transaction.commit();
if  (txnEventCount <  1 ) {
return  Status.BACKOFF;
else  {
sinkCounter.addToEventDrainSuccessCount(txnEventCount);
return  Status.READY;
}
catch  (IOException eIO) {
transaction.rollback();
LOG.warn( "HDFS IO error" , eIO);
return  Status.BACKOFF;
catch  (Throwable th) {
transaction.rollback();
LOG.error( "process failed" , th);
if  (th  instanceof  Error) {
throw  (Error) th;
else  {
throw  new  EventDeliveryException(th);
}
finally  {
transaction.close();
}
}

BucketWriter

flush() 方法:

BucketWriter中维护了一个batchCounter,在这个batchCounter大小不为0的时候会进行doFlush(), doFlush()主要就是对batch中的event进行序列化和输出流flush操作,最终结果就是将events写入HDFS中。

如果用户设置了idleTimeout参数不为0,在doFlush()操作之后,会往定时执行线程池中添加一个任务,该关闭当前连接HDFS的输出对象HDFSWriter,执行时间间隔为idleTimeout,并将这个延迟调度的任务赋值给idleFuture变量。


append()方法:

在介绍flush()方法中,会介绍一个idleFuture变量对应的功能,在append()方法执行前首先会检查idleFuture任务是否执行完毕,如果没有执行完成会设置一个超时时间callTimeout等待该进程完成,然后再进行append之后的操作。这样做主要是为了防止关闭HdfsWriter的过程中还在往HDFS中append数据,在append一半时候,HdfsWriter关闭了。

之后,在正是append()之前,又要首先检查当前是否存在HDFSWirter可用于append操作,如果没有调用open()方法。

每次将event往hdfs中append的时候都需要对rollCount,rollSize两个参数进行检查,在满足这两个参数条件的情况下,就需要将临时文件重命名为(roll)正式的HDFS文件。之后,重新再open一个hdfswriter,往这个hdfswriter中append每个event,当event个数达到batchSize时,进行flush操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
public  synchronized  void  append( final  Event event)  throws  IOException, InterruptedException {
checkAndThrowInterruptedException();
// idleFuture是ScheduledFuture实例,主要功能关闭当前HDFSWriter,在append event之前需要判断
// idleFuture是否已经执行完成,否则会造成在append一半的时候 hdfswriter被关闭
if  (idleFuture !=  null ) {
idleFuture.cancel( false );
// There is still a small race condition - if the idleFuture is already
// running, interrupting it can cause HDFS close operation to throw -
// so we cannot interrupt it while running. If the future could not be
// cancelled, it is already running - wait for it to finish before
// attempting to write.
if  (!idleFuture.isDone()) {
try  {
idleFuture.get(callTimeout, TimeUnit.MILLISECONDS);
catch  (TimeoutException ex) {
LOG.warn( "Timeout while trying to cancel closing of idle file. Idle"  +
" file close may have failed" , ex);
catch  (Exception ex) {
LOG.warn( "Error while trying to cancel closing of idle file. " , ex);
}
}
idleFuture =  null ;
}
// If the bucket writer was closed due to roll timeout or idle timeout,
// force a new bucket writer to be created. Roll count and roll size will
// just reuse this one
if  (!isOpen) {
if  (closed) {
throw  new  BucketClosedException( "This bucket writer was closed and "  +
"this handle is thus no longer valid" );
}
open();
}
// 检查rollCount,rollSize两个roll文件的参数,判断是否roll出新文件
if  (shouldRotate()) {
boolean  doRotate =  true ;
if  (isUnderReplicated) {
if  (maxConsecUnderReplRotations >  0  &&
consecutiveUnderReplRotateCount >= maxConsecUnderReplRotations) {
doRotate =  false ;
if  (consecutiveUnderReplRotateCount == maxConsecUnderReplRotations) {
LOG.error( "Hit max consecutive under-replication rotations ({}); "  +
"will not continue rolling files under this path due to "  +
"under-replication" , maxConsecUnderReplRotations);
}
else  {
LOG.warn( "Block Under-replication detected. Rotating file." );
}
consecutiveUnderReplRotateCount++;
else  {
consecutiveUnderReplRotateCount =  0 ;
}
if  (doRotate) {
close();
open();
}
}
// write the event
try  {
sinkCounter.incrementEventDrainAttemptCount(); // sinkCounter统计metrix
callWithTimeout( new  CallRunner<Void>() {
@Override
public  Void call()  throws  Exception {
writer.append(event);  //writer是通过配置参数hdfs.fileType创建的HDFSWriter实现
return  null ;
}
});
catch  (IOException e) {
LOG.warn( "Caught IOException writing to HDFSWriter ({}). Closing file ("  +
bucketPath +  ") and rethrowing exception." ,
e.getMessage());
try  {
close( true );
catch  (IOException e2) {
LOG.warn( "Caught IOException while closing file ("  +
bucketPath +  "). Exception follows." , e2);
}
throw  e;
}
// update statistics
processSize += event.getBody().length;
eventCounter++;
batchCounter++;
if  (batchCounter == batchSize) {
flush();
}
}