微软职位内部推荐-Data Scientist

简介: 微软近期Open的职位:Job Description:Extracting accurate, insightful and actionable information from data is part art and part science and full of interesting puzzles and challenges.

微软近期Open的职位:


Job Description:
Extracting accurate, insightful and actionable information from data is part art and part science and full of interesting puzzles and challenges. In Office 365 business, we rely heavily on using the insights gained from data to guide feature development and provide value to our customers. We are fortunate to be able to work with huge volumes of rich data using one of the world’s largest data processing systems. This provides a fantastic environment for data miners and analysts to uncover substantial insights and translate them into actions that drive the product and ultimately have a big impact on the success of the business. If you are interested in turning data into actionable insights and have what it takes to work with this highly talented team on challenging analysis projects then please contact us.

Job Responsibilities include:
Extract actionable insights from huge volumes of rich data using data mining, statistics, and database techniques. The goal is to measure/understand user experience, system performance, and business health in order to generate actionable insights that improve search systems and increase user satisfaction.
Research and exploration in the areas of data mining, machine learning, search system live measurement and monitoring, bot/spam traffic identification and filtering, etc.
Work with other teams in Office and other online business units on identifying problems in different areas where data mining/machine learning/statistics can help. Explore and develop solutions to these problems. Act as an expert in the area of data mining/machine learning/statistics to serve the fast growing needs of Office big data.
Develop techniques/algorithms/measurement for the research and analysis work mentioned above.

Qualifications:
Outstanding analytical and problem solving skills.
Superior communications skills, both verbal and written.
Extensive knowledge and experience in at least one of the following areas: data mining, web mining, machine learning, statistics, business intelligence/customer intelligence, user modeling, information retrieval, databases, data warehousing, OLAP, data processing (ETL), e-metrics/measurement, parallel and distributed computation (two or more areas are preferred).
Strong theory/algorithm background and very good understanding on how to apply advanced knowledge to solve real problems.
Experience/knowledge with various data analysis tools, data mining tools, and statistical packages.
Extensive data analysis/processing experience (minimum 3 years, preferred 5 years). Experience on web domain is a plus.
Bachelor’s or Master’s degree in Computer Science or Statistics or a related field (PhD preferred).

Microsoft is an equal opportunity employer and supports workforce diversity.
GCR:CN:DEV:EN

如果你想试试这个职位,请跟我联系,我是微软的员工,可以做内部推荐。发你的中英文简历到我的邮箱:Nicholas.lu.mail(at)gmail.com

相关文章
|
缓存 边缘计算 监控
2024年前端性能优化的新策略
【10月更文挑战第3天】本文分享了一些2024年前端性能优化的新策略,希望能够为前端开发者提供实用的参考和指导。在实际开发中,应根据应用的具体需求和场景选择合适的优化方法。
|
机器学习/深度学习 人工智能 并行计算
5分钟掌握开源图神经网络框架DGL使用
近几年神经网络在人工智能领域的成功应用,让它备受关注和热捧。但是,它自身依然具有本质上的局限性,以往的神经网络都是限定在欧式空间内,这和大多数实际应用场景并不符合,因此,也阻碍了它在很多领域的实际落地应用。
5分钟掌握开源图神经网络框架DGL使用
|
移动开发 小程序
关于微信公众号插入外部链接
关于微信公众号插入外部链接
1871 0
关于微信公众号插入外部链接
|
传感器 机器学习/深度学习 人工智能
仿生机器人:自然界灵感的工程应用
【10月更文挑战第14天】仿生机器人作为自然界灵感与工程技术的完美结合,正逐步改变着我们的生活和工作方式。通过深入了解其设计原理、关键技术、应用领域以及未来的发展趋势,我们可以更加清晰地看到仿生机器人在推动科技创新和社会发展中的重要作用。让我们共同期待仿生机器人在未来带来的更多惊喜和变革!
|
安全 数据可视化 物联网
智慧园区解决方案:科技赋能,打造未来管理新典范
智慧园区作为城市发展的重要组成部分,借助5G、云计算、大数据、物联网等前沿技术,实现高效、活力、绿色、安全的四大核心目标。通过全场景数字化感知、统一数据模型构建、智能化管控与数据化运营、综合安防管理等手段,提升园区运营效率和管理水平,促进产业升级和可持续发展。
681 11
|
安全 网络协议 网络安全
2023年全国职业院校技能大赛信息安全管理与评估-理论题答案
2023年全国职业院校技能大赛信息安全管理与评估-理论题答案
|
存储 缓存 JSON
fastjson2为什么这么快
fastjson2 提升速度的核心技术
76258 6
fastjson2为什么这么快
台达B2伺服驱动器操作模式如何设置?伺服驱动器与外围装置如何连接?
本篇我们以台达B2伺服为例来简单介绍一下伺服驱动器操作模式如何设置以及伺服驱动器与外围装置如何连接。
台达B2伺服驱动器操作模式如何设置?伺服驱动器与外围装置如何连接?
|
移动开发 开发框架 监控
语雀 App 跨端技术架构实践
语雀 App 跨端技术架构实践
911 1
|
机器学习/深度学习 弹性计算 运维
什么是阿里云轻量应用服务器?轻量优缺点对比
什么是阿里云轻量应用服务器?轻量优缺点对比,阿里云服务器ECS和轻量应用服务器有什么区别?
840 0