学习笔记CB005:关键词、语料提取

简介:

关键词提取。pynlpir库实现关键词提取。

# coding:utf-8

import sys
import importlib
importlib.reload(sys)

import pynlpir

pynlpir.open()
s = '怎么才能把电脑里的垃圾文件删除'

key_words = pynlpir.get_key_words(s, weighted=True)
for key_word in key_words:
    print(key_word[0], 't', key_word[1])

pynlpir.close()

百度接口:https://www.baidu.com/s?wd=机器学习 数据挖掘 信息检索

安装scrapy pip install scrapy。创建scrapy工程 scrapy startproject baidu_search。做抓取器,创建baidu_search/baidu_search/spiders/baidu_search.py文件。

# coding:utf-8

import sys
import importlib
importlib.reload(sys)

import scrapy

class BaiduSearchSpider(scrapy.Spider):
    name = "baidu_search"
    allowed_domains = ["baidu.com"]
    start_urls = [
            "https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
    ]

    def parse(self, response):
        filename = "result.html"
        with open(filename, 'wb') as f:
            f.write(response.body)

修改settings.py文件,ROBOTSTXT_OBEY = False,USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' ,DOWNLOAD_TIMEOUT = 5 ,

进入baidu_search/baidu_search/目录,scrapy crawl baidu_search 。生成result.html,正确抓取网页。

语料提取。搜索结果只是索引。真正内容需进入链接。分析抓取结果,链接嵌在class=c-container Div h3 a标签 href属性。url添加到抓取队列抓取。提取正文,去掉标签,保存摘要。提取url时,提取标题和摘要,scrapy.Request meta传递到处理函数parse_url,抓取完成后能接到这两个值,提取content。完整数据:url、title、abstract、content。

# coding:utf-8

import sys
import importlib
importlib.reload(sys)

import scrapy
from scrapy.utils.markup import remove_tags

class BaiduSearchSpider(scrapy.Spider):
    name = "baidu_search"
    allowed_domains = ["baidu.com"]
    start_urls = [
            "https://www.baidu.com/s?wd=电脑 垃圾 文件 删除"
    ]

    def parse(self, response):
        # filename = "result.html"
        # with open(filename, 'wb') as f:
        #     f.write(response.body)
        hrefs = response.selector.xpath('//div[contains(@class, "c-container")]/h3/a/@href').extract()
        # for href in hrefs:
        #     print(href)
        #     yield scrapy.Request(href, callback=self.parse_url)
        containers = response.selector.xpath('//div[contains(@class, "c-container")]')
        for container in containers:
            href = container.xpath('h3/a/@href').extract()[0]
            title = remove_tags(container.xpath('h3/a').extract()[0])
            c_abstract = container.xpath('div/div/div[contains(@class, "c-abstract")]').extract()
            abstract = ""
            if len(c_abstract) > 0:
                abstract = remove_tags(c_abstract[0])
            request = scrapy.Request(href, callback=self.parse_url)
            request.meta['title'] = title
            request.meta['abstract'] = abstract
            yield request

    def parse_url(self, response):
        print(len(response.body))
        print("url:", response.url)
        print("title:", response.meta['title'])
        print("abstract:", response.meta['abstract'])
        content = remove_tags(response.selector.xpath('//body').extract()[0])
        print("content_len:", len(content))

参考资料:

《Python 自然语言处理》

http://www.shareditor.com/blogshow/?blogId=43

http://www.shareditor.com/blogshow?blogId=76

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

目录
相关文章
|
2月前
|
Serverless
文本数据信息提取体验
文本数据信息提取体验
文本数据信息提取体验
|
3月前
|
自然语言处理 API
分词提取[关键词提取]免费API接口教程
接口用于从指定文本中提取关键词,支持POST和GET请求。需提供用户ID、用户KEY及待提取文本,可选设置关键词分隔符。返回状态码及结果或错误信息。示例中ID与KEY为公共测试用,建议使用个人ID与KEY以获得更高调用频率。
|
4月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
402 0
|
6月前
|
网络安全 语音技术
语音情感基座模型emotion5vec 问题之什么是歌曲情感识别,在歌曲情感识别任务中,emotion2vec的如何表现
语音情感基座模型emotion5vec 问题之什么是歌曲情感识别?在歌曲情感识别任务中,emotion2vec的如何表现
|
人工智能 数据挖掘 PyTorch
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
|
9月前
|
机器学习/深度学习 语音技术
Hotword模型在语音识别系统中定义为能够识别特定关键词或短语(也称为唤醒词)的模型
Hotword模型在语音识别系统中定义为能够识别特定关键词或短语(也称为唤醒词)的模型
441 9
Bert可以提取关键词了:KeyBERT的介绍与使用
Bert可以提取关键词了:KeyBERT的介绍与使用
2021 1
Bert可以提取关键词了:KeyBERT的介绍与使用
|
机器学习/深度学习 算法
JointKPE关键词抽取论文算法解读
这篇论文是清华大学2021年的论文,主要目的是在开放领域进行关键词/短语抽取。作者提出了一种模型叫做JointKPE,是建立在预训练语言模型上的开放领域关键词抽取模型
273 0
JointKPE关键词抽取论文算法解读
|
自然语言处理 达摩院 算法
长文本口语语义理解技术系列②:关键词抽取实践
长文本口语语义理解技术系列②:关键词抽取实践
253 0
长文本口语语义理解技术系列②:关键词抽取实践
|
人工智能 自然语言处理 算法
基于Ernie-3.0 CAIL2019法研杯要素识别多标签分类任务
基于Ernie-3.0 CAIL2019法研杯要素识别多标签分类任务
基于Ernie-3.0 CAIL2019法研杯要素识别多标签分类任务