PgSQL · 特性分析 · full page write 机制

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云数据库 RDS SQL Server,基础系列 2核4GB
简介: PG默认每个page的大小为8K,PG数据页写入是以page为单位,但是在断电等情况下,操作系统往往不能保证单个page原子地写入磁盘,这样就极有可能导致部分数据块只写到4K(操作系统是一般以4K为单位),这些“部分写”的页面包含新旧数据的混合。在崩溃后的恢复期间,xlog 里面存储的记录变化信息.

PG默认每个page的大小为8K,PG数据页写入是以page为单位,但是在断电等情况下,操作系统往往不能保证单个page原子地写入磁盘,这样就极有可能导致部分数据块只写到4K(操作系统是一般以4K为单位),这些“部分写”的页面包含新旧数据的混合。在崩溃后的恢复期间,xlog 里面存储的记录变化信息不够完整,无法完全恢复该页。PG为了解决这类问题,full_page_write机制孕育而生。

什么是full_page_write?

PostgreSQL 在 checkpoint 之后在对数据页面的第一次写的时候会将整个数据页面写到 xlog 里面。当出现主机断电或者OS崩溃时,redo操作时通过checksum发现“部分写”的数据页,并将xlog中保存的这个完整数据页覆盖当前损坏的数据页,然后再继续redo就可以恢复整个数据库了。
除了能够解决断电等带来坏数据页问题外,full_page_write 还应用在在线备份功能上。PG进行全量备份数据库一般通过pg_basebackup工具实现,pg_basebackup类似于copy操作,在此期间,也会出现部分数据页写到一半时文件被copy走了,正是因为full_page_write存在,备份出来的数据库才可以成功恢复启动。所以即便full_page_write=off,在备份时也会被强制自动打开,保证备份成功。

实现原理

full_page_write主要在XLogInsert(插入一条xlog记录)时发挥作用,通过full_page_writer开关状态以及是否是checkpoint后对数据页面的第一次修改(lsn<RedoRecPtr)判断是否需要备份数据页。如果需要备份,那么则把数据页存放在这条记录的末尾,最终写入到xlog中。

doPageWrites = Insert->fullPageWrites || Insert->forcePageWrites;
/* Find info for buffer */
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
    if (dtbuf[i] == InvalidBuffer)
    {
    	/* OK, put it in this slot */
    	dtbuf[i] = rdt->buffer;
    	if (doPageWrites && XLogCheckBuffer(rdt, true,&(dtbuf_lsn[i]), &(dtbuf_xlg[i])))
    	{
    		dtbuf_bkp[i] = true;
    		rdt->data = NULL;
    		rdt->len = 0;
    	}
    	break;
    }
    ......
}

在redo恢复的时候只要数据块有备份,那么就是用备份的数据。

/* If we have a full-page image, restore it and we're done */
if (record->xl_info & XLR_BKP_BLOCK(0))
{
	(void) RestoreBackupBlock(lsn, record, 0, false, false);
	return;
}

fullpagewrite

full_page_write不足之处

因为full_page_write需要在xlog中记录数据页,会写更多xlog文件,不仅有数据变化信息,还有数据页本身信息,这样会增加额外的IO和磁盘消耗,同时也会引起主备延迟变大。
为了优化full_page_write,社区提供了一个patch,它的主要设计是创建两个共享内存块队列,checkpoint专用buffer队列和非checkpoint专用buffer队列,同时关闭full_page_write。当用户DML产生的数据buffer需要刷盘时,并不是立即刷到磁盘,而是先进入double write的buffer队列,当buffer队列满时,则将buffer队列里面的数据首先刷到特别的double write文件,然后再将数据刷到数据库文件。通过这种设计就不需要在checkpoint 之后在对数据页面的第一次写的时候会将整个数据页面写到 xlog 里面。当数据库需要恢复的时候,遍历所有double write文件里面的记录块,找到每个记录块对应的数据库page,然后对这个page进行checksum,如果page损坏,那么直接把记录块里面的内容覆盖到buffer数据。最后把double write文件删除,重新初始化buffer队列。

fullpagewrite_2_

总结

把full_page_write这个选项关闭会提高数据库执行速度以及减少xlog数量,但是可能导致系统崩溃或者掉电之后的数据库损坏。如果有减小部分页面写入风险的硬件支持(比如电池供电的磁盘控制器),或者文件系统支持(能够保证page写入原子性),可以把风险降低到一个可以接受的范围,那么可以考虑关闭这个选项,其他情况下建议打开这个选择。

目录
相关文章
|
缓存 关系型数据库 数据库
|
存储 运维 关系型数据库
|
关系型数据库 MySQL
MySQL · RocksDB · Level Compact 分析
综述 在RocksDB中,将MemTable刷新到磁盘之后,将会有很多sstable,而这些sstable则是可能包含了相同的key的不同时间的值,这样子就会导致两个问题: 浪费磁盘空间 读取内容将会非常慢.
3112 0
|
关系型数据库 MySQL 索引
MySQL8.0.12 · 引擎特性 · LOB Partial Update优化
在之前,笔者介绍过InnoDB对于lob列的更新优化,即允许对lob类型的列数据进行部分更新。由于undo log page本身的限制(例如无法存储过长的数据),对于大列更新,旧版本被留在数据文件中,在MVCC读时,直接从中读旧版本即可。
2481 0
|
关系型数据库 MySQL
MySQL · 引擎特性 · IO_CACHE 源码解析
概述 在数据库中 IO 的重要性不言而喻,为了更好的管理 IO 操作,大多数数据库都自己管理页数据和刷脏机制(例如 InnoDB 中的 Buffer pool),而不是交给文件系统甚至是操作系统调度。但是对于顺序写入的日志数据,使用文件系统接口方便的多,文件系统 也是以页的形式管理,呈现给应用层的是一片连续可写的空间,管理的单位称为 Sector 大小是 4KB,所以对于 4KB 对齐的地址读写可以避免跨多个 Sector,对文件系统的性能有很大的提高。
1923 0
|
缓存 关系型数据库 数据库
|
存储 关系型数据库 数据库
|
SQL 关系型数据库 数据库
|
关系型数据库 MySQL
MySQL · 特性分析 · innodb_buffer_pool_size在线修改
InnoDB Buffer Pool缓存了表数据和二级索引在内存中,提高数据库效率,因此设置innodb_buffer_pool_size到合理数值对实例性能影响很大。当size设置偏小,会导致数据库大量直接磁盘的访问,而设置过大会导致实例占用内存太多,容易发生OOM。
4607 0