Linux操作系统下的集群工作原理及实战经历

简介:

Linux操作系统下的集群工作原理及实战经历 OKLinux [url]www.oklinux.cn[/url] 2007-07-12 来源:赛迪网 skid 会员收藏 游客收藏 为了便于学习Linux,请收藏本站点或推荐本站给您的好友!---加入收藏 Translate to English(把当前页翻译成英文) 一、集群和Linux上的集群解决方案 集群系统(Cluster)主要解决下面几个问题: 高可靠性(HA) 利用集群管理软件,当主服务器故障时,备份服务器能够自动接管主服务器的工作,并及时切换过去,以实现对用户的不间断服务。 高性能计算(HP) 即充分利用集群中的每一台计算机的资源,实现复杂运算的并行处理,通常用于科学计算领域,比如基因分析,化学分析等。 负载平衡 即把负载压力根据某种算法合理分配到集群中的每一台计算机上,以减轻主服务器的压力,降低对主服务器的硬件和软件要求。 基于Linux的集群解决方案可谓百花齐放。在实际应用中,最常见的情况是利用集群解决负载平衡问题,比如用于提供WWW服务。在这里主要展示如何使用LVS(Linux Virtial Server)来实现实用的WWW负载平衡集群系统。 二、LVS简介 LVS是章文嵩博士发起和领导的优秀的集群解决方案,许多商业的集群产品,比如RedHat 的Piranha,TurboLinux公司的Turbo Cluster等,都是基于LVS的核心代码的。在现实的应用中,LVS得到了大量的部署,请参考http: //www.linuxvirtualserver.org/deployment.html。关于Linux LVS的工作原理和更详细的信息,请参考[url]http://www.linuxvirtualserver.org[/url]。 三、LVS配置实例 通过Linux LVS,实现WWW,Telnet服务的负载平衡。这里实现Telnet集群服务仅为了测试上的方便。 LVS有三种负载平衡方式,NAT(Network Address Translation),DR(Direct Routing),IP Tunneling。其中,最为常用的是DR方式,因此这里只说明DR(Direct Routing)方式的LVS负载平衡。为测试方便,4台机器处于同一网段内,通过一交换机或者集线器相连。实际的应用中,最好能将虚拟服务器vs1和真实服务器rs1, rs2置于于不同的网段上,即提高了性能,也加强了整个集群系统的安全性。 服务器的软硬件配置 首先说明,虽然本文的测试环境中用的是3台相同配置的服务器,但LVS并不要求集群中的服务器规格划一,相反,可以根据服务器的不同配置和负载情况,调整负载分配策略,充分利用集群环境中的每一台服务器。 这3台服务器中,vs1作为虚拟服务器(即负载平衡服务器),负责将用户的访问请求转发到集群内部的rs1,rs2,然后由rs1,rs2分别处理。client为客户端测试机器,可以为任意操作系统。 4台服务器的操作系统和网络配置分别为: vs1: RedHat 6.2, Kernel 2.2.19 vs1: eth0 192.168.0.1 vs1: eth0:101 192.168.0.101 rs1: RedHat 6.2, Kernel 2.2.14 rs1: eth0 192.168.0.3 rs1: dummy0 192.168.0.101 rs2: RedHat 6.2, Kernel 2.2.14 rs2: eth0 192.168.0.4 rs2: dummy0 192.168.0.101 client: Windows 2000 client: eth0 192.168.0.200 其中,192.168.0.101是允许用户访问的IP。 虚拟服务器的集群配置 大部分的集群配置工作都在虚拟服务器vs1上面,需要下面的几个步骤: 重新编译内核。 首先,下载最新的Linux内核,版本号为2.2.19,下载地址为:[url]http://www.kernel.org/[/url],解压缩后置于/usr/src/linux目录下。 其次需要下载LVS的内核补丁,地址为:http: //www.linuxvirtualserver.org/software/ipvs- 1.0.6-2.2.19.tar.gz。这里注意,如果你用的Linux内核不是2.2.19版本的,请下载相应版本的LVS内核补丁。将ipvs- 1.0.6-2.2.19.tar.gz解压缩后置于/usr/src/linux目录下。 然后,对内核打补丁,如下操作: [root@vs2 /root]# cd /usr/src/linux [root@vs2 linux]# patch -p1 < ipvs-1.0.6-2.2.19/ipvs-1.0.6-2.2.19. patch 下面就是重新配置和编译Linux的内核。特别注意以下选项: 1 Code maturity level options---> * [*]Prompt for development and/or incomplete code/drivers 2 Networking部分: [*] Kernel/User netlink socket [*] Routing messages <*> Netlink device emulation * [*] Network firewalls [*] Socket Filtering <*> Unix domain sockets * [*] TCP/IP networking [*] IP: multicasting [*] IP: advanced router [ ] IP: policy routing [ ] IP: equal cost multipath [ ] IP: use TOS value as routing key [ ] IP: verbose route monitoring [ ] IP: large routing tables [ ] IP: kernel level autoconfiguration * [*] IP: firewalling [ ] IP: firewall packet netlink device * [*] IP: transparent proxy support * [*] IP: masquerading --- Protocol-specific masquerading support will be built as modules. * [*] IP: ICMP masquerading --- Protocol-specific masquerading support will be built as modules. * [*] IP: masquerading special modules support * IP: ipautofw masq support (EXPERIMENTAL)(NEW) * IP: ipportfw masq support (EXPERIMENTAL)(NEW) * IP: ip fwmark masq-forwarding support (EXPERIMENTAL)(NEW) * [*] IP: masquerading virtual server support (EXPERIMENTAL)(NEW) [*] IP Virtual Server debugging (NEW) <--最好选择此项,以便观察LVS的调试信息 * (12) IP masquerading VS table size (the Nth power of 2) (NEW) * IPVS: round-robin scheduling (NEW) * IPVS: weighted round-robin scheduling (NEW) * IPVS: least-connection scheduling (NEW) * IPVS: weighted least-connection scheduling (NEW) * IPVS: locality-based least-connection scheduling (NEW) * IPVS: locality-based least-connection with replication scheduling (NEW) * [*] IP: optimize as router not host * IP: tunneling IP: GRE tunnels over IP [*] IP: broadcast GRE over IP [*] IP: multicast routing [*] IP: PIM-SM version 1 support [*] IP: PIM-SM version 2 support * [*] IP: aliasing support [ ] IP: ARP daemon support (EXPERIMENTAL) * [*] IP: TCP syncookie support (not enabled per default) --- (it is safe to leave these untouched) < > IP: Reverse ARP [*] IP: Allow large windows (not recommended if <16Mb of memory) < > The IPv6 protocol (EXPERIMENTAL) 上面,带*号的为必选项。然后就是常规的编译内核过程,不再赘述。 在这里要注意一点:如果你使用的是RedHat自带的内核或者从RedHat下载的内核版本,已经预先打好了LVS的补丁。这可以通过查看/usr/src/linux/net/目录下有没有几个ipvs开头的文件来判断:如果有,则说明已经打过补丁。 编写LVS配置文件,实例中的配置文件如下: #lvs_dr.conf (C) Joseph Mack [email]mack@ncifcrf.gov[/email] LVS_TYPE=VS_DR INITIAL_STATE=on VIP=eth0:101 192.168.0.101 255.255.255.0 192.168.0.0 DIRECTOR_INSIDEIP=eth0 192.168.0.1 192.168.0.0 255.255.255.0 192.168.0. 255 SERVICE=t telnet rr rs1:telnet rs2:telnet SERVICE=t www rr rs1:www rs2:www SERVER_VIP_DEVICE=dummy0 SERVER_NET_DEVICE=eth0 #----------end lvs_dr.conf------------------------------------ 将该文件置于/etc/lvs目录下。 使用LVS的配置脚本产生lvs.conf文件。该配置脚本可以从http: //www.linuxvirtualserver.org/Joseph.Mack/configure-lvs_0.8.tar.gz 单独下载,在ipvs-1.0.6-2.2.19.tar.gz包中也有包含脚本configure的使用方法: [root@vs2 lvs]# configure lvs.conf 这样会产生几个配置文件,这里我们只使用其中的rc.lvs_dr文件。修改/etc/rc.d/init.d/rc.local,增加如下几行: echo 1 > /proc/sys/net/ipv4/ip_forward echo 1 > /proc/sys/net/ipv4/ip_always_defrag # 显示最多调试信息 echo 10 > /proc/sys/net/ipv4/vs/debug_level 配置NFS服务。这一步仅仅是为了方便管理,不是必须的步骤。假设配置文件lvs.conf文件放在/etc/lvs目录下,则/etc/exports文件的内容为: /etc/lvs ro(rs1,rs2) 然后使用exportfs命令输出这个目录: [root@vs2 lvs]# exportfs 如果遇到什么麻烦,可以尝试: [root@vs2 lvs]# /etc/rc.d/init.d/nfs restart [root@vs2 lvs]# exportfs 这样,各个real server可以通过NFS获得rc.lvs_dr文件,方便了集群的配置:你每次修改lvs.conf中的配置选项,都可以即可反映在rs1,rs2的相应目录里。 修改/etc/syslogd.conf,增加如下一行: kern.* /var/log/kernel_log。这样,LVS的一些调试信息就会写入/var/log/kernel_log文件中。 Real Server的配置 Real Server的配置相对简单,主要是是以下几点: 配置telnet和WWW服务。telnet服务没有需要特别注意的事项,但是对于www服务,需要修改httpd.conf文件,使得apache在虚拟服务器的ip地址上监听,如下所示: Listen 192.168.0.101:80 关闭Real Server上dummy0的arp请求响应能力。这是必须的,具体原因请参见 ARP problem in LVS/TUN and LVS/DR关闭dummy0的arp响应的方式有多种,比较简单地方法是,修改/etc/rc.d/rc.local文件,增加如下几行: echo 1 > /proc/sys/net/ipv4/conf/all/hidden ifconfig dummy0 up ifconfig dummy0 192.168.0.101 netmask 255.255.255.0 broadcast 192.168. 0.0 up echo 1 > /proc/sys/net/ipv4/conf/dummy0/hidden 再次修改/etc/rc.d/rc.local,增加如下一行:(可以和步骤2合并) echo 1 > /proc/sys/net/ipv4/ip_forward 四、LVS的测试 好了,经过了上面的配置步骤,现在可以测试LVS了,步骤如下: 分别在vs1,rs1,rs2上运行/etc/lvs/rc.lvs_dr。注意,rs1, rs2上面的/etc/lvs目录是vs2输出的。如果您的 NFS配置没有成功,也可以把vs1上/etc/lvs/rc.lvs_dr复制到rs1,rs2上,然后分别运行。确保rs1,rs2上面的 apache已经启动并且允许telnet。 然后从client运行telnet 192.168.0.101,如果登录后看到如下输出就说明集群已经开始工作了。(假设以guest用户身份登录) [guest@rs1 guest]$-----------说明已经登录到服务器rs1上。 再开启一个telnet窗口,登录后会发现系统提示变为: [guest@rs2 guest]$-----------说明已经登录到服务器rs2上。 然后在vs2上运行如下命令: [root@vs2 /root]ipvsadm 运行结果应该为: IP Virtual Server version 1.0.6 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 192.168.0.101:telnet rr -> rs2:telnet Route 1 1 0 -> rs1:telnet Route 1 1 0 TCP 192.168.0.101:www rr -> rs2:www Route 1 0 0 -> rs1:www Route 1 0 0 至此已经验证telnet的LVS正常。然后测试一下WWW是否正常:用你的浏览器查看 [url]http://192.168.0.101/[/url]是否有什么变化?为了更明确的区别响应来自那个Real Server,可以在rs1,rs2上面分别放置如下的测试页面(test.html): 我是real server #1 or #2 然后刷新几次页面([url]http://192.168.0.101/test.html[/url]),如果你看到“我是real server #1”和“我是real server #2”交替出现,说明www的LVS系统已经正常工作了。 但是由于Internet Explore 或者Netscape本身的缓存机制,你也许总是只能看到其中的一个。不过通过ipvsadm还是可以看出,页面请求已经分配到两个Real Server上了,如下所示: IP Virtual Server version 1.0.6 (size=4096) Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 192.168.0.101:telnet rr -> rs2:telnet Route 1 0 0 -> rs1:telnet Route 1 0 0 TCP 192.168.0.101:www rr -> rs2:www Route 1 0 5 -> rs1:www Route 1 0 4 或者,可以采用linux的lynx作为测试客户端,效果更好一些。如下运行命令: [root@client /root]while true; do lynx -dump [url]http://10.64.1.56/test.html;[/url] sleep 1; done 这样,每隔1秒钟“我是realserver #1”和“我是realserver #2”就交替出现一次,清楚地表明响应分别来自两个不同的Real Server。


本文转自 pgmia 51CTO博客,原文链接:http://blog.51cto.com/heyiyi/64211

相关文章
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
69 1
|
27天前
|
SQL 网络安全 数据库
GBase 8a集群V8客户端gccli适配欧拉操作系统绕行方案分析
GBase 8a集群V8客户端gccli适配欧拉操作系统绕行方案分析
|
1月前
|
安全 Linux 数据安全/隐私保护
深入Linux操作系统:文件系统和权限管理
在数字世界的海洋中,操作系统是连接用户与硬件的桥梁,而Linux作为其中的佼佼者,其文件系统和权限管理则是这座桥梁上不可或缺的结构。本文将带你探索Linux的文件系统结构,理解文件权限的重要性,并通过实际案例揭示如何有效地管理和控制这些权限。我们将一起航行在Linux的命令行海洋中,解锁文件系统的奥秘,并学习如何保护你的数据免受不必要的访问。
|
1月前
|
搜索推荐 Linux
深入理解Linux操作系统的启动过程
本文旨在揭示Linux操作系统从开机到完全启动的神秘面纱,通过逐步解析BIOS、引导加载程序、内核初始化等关键步骤,帮助读者建立对Linux启动流程的清晰认识。我们将探讨如何自定义和优化这一过程,以实现更高效、更稳定的系统运行。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
1月前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
人工智能 安全 Linux
Linux操作系统的演变与未来趋势###
本文深入探讨了Linux操作系统从诞生至今的发展历程,分析了其开源模式对技术创新和IT行业的影响,并展望了Linux在未来技术生态中的角色。通过历史回顾、现状分析和未来预测,本文旨在为读者提供一个关于Linux操作系统全面而深入的视角。 ###
|
2月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
37 2

热门文章

最新文章