Using Redis as an LRU cache
When Redis is used as a cache, sometimes it is handy to let it automatically evict old data as you add new one. This behavior is very well known in the community of developers, since it is the default behavior of the popularmemcached system.
LRU is actually only one of the supported eviction methods. This page covers the more general topic of the Redismaxmemory
directive that is used in order to limit the memory usage to a fixed amount, and it also covers in depth the LRU algorithm used by Redis, that is actually an approximation of the exact LRU.
Maxmemory configuration directive
The maxmemory
configuration directive is used in order to configure Redis to use a specified amount of memory for the data set. It is possible to set the configuration directive using the redis.conf
file, or later using the CONFIG SETcommand at runtime.
For example in order to configure a memory limit of 100 megabytes, the following directive can be used inside theredis.conf
file.
maxmemory 100mb
Setting maxmemory
to zero results into no memory limits. This is the default behavior for 64 bit systems, while 32 bit systems use an implicit memory limit of 3GB.
When the specified amount of memory is reached, it is possible to select among different behaviors, called policies. Redis can just return errors for commands that could result in more memory being used, or it can evict some old data in order to return back to the specified limit every time new data is added.
Eviction policies
The exact behavior Redis follows when the maxmemory
limit is reached is configured using the maxmemory-policy
configuration directive.
The following policies are available:
-
noeviction: return errors when the memory limit was reached and the client is trying to execute commands that could result in more memory to be used (most write commands, but DEL and a few more exceptions).
-
allkeys-lru: evict keys trying to remove the less recently used (LRU) keys first, in order to make space for the new data added.
-
volatile-lru: evict keys trying to remove the less recently used (LRU) keys first, but only among keys that have anexpire set, in order to make space for the new data added.
-
allkeys-random: evict random keys in order to make space for the new data added.
-
volatile-random: evict random keys in order to make space for the new data added, but only evict keys with anexpire set.
-
volatile-ttl: In order to make space for the new data, evict only keys with an expire set, and try to evict keys with a shorter time to live (TTL) first.
The policies volatile-lru, volatile-random and volatile-ttl behave like noeviction if there are no keys to evict matching the prerequisites.
To pick the right eviction policy is important depending on the access pattern of your application, however you can reconfigure the policy at runtime while the application is running, and monitor the number of cache misses and hits using the Redis INFO output in order to tune your setup.
In general as a rule of thumb:
-
Use the allkeys-lru policy when you expect a power-law distribution in the popularity of your requests, that is, you expect that a subset of elements will be accessed far more often than the rest. This is a good pick if you are unsure.
-
Use the allkeys-random if you have a cyclic access where all the keys are scanned continuously, or when you expect the distribution to be uniform (all elements likely accessed with the same probability).
-
Use the volatile-ttl if you want to be able to provide hints to Redis about what are good candidate for expiration by using different TTL values when you create your cache objects.
The volatile-lru and volatile-random policies are mainly useful when you want to use a single instance for both caching and to have a set of persistent keys. However it is usually a better idea to run two Redis instances to solve such a problem.
It is also worth to note that setting an expire to a key costs memory, so using a policy like allkeys-lru is more memory efficient since there is no need to set an expire for the key to be evicted under memory pressure.
How the eviction process works
It is important to understand that the eviction process works like this:
-
A client runs a new command, resulting in more data added.
-
Redis checks the memory usage, and if it is greater than the
maxmemory
limit , it evicts keys according to the policy. -
A new command is executed, and so forth.
So we continuously cross the boundaries of the memory limit, by going over it, and then by evicting keys to return back under the limits.
If a command results in a lot of memory being used (like a big set intersection stored into a new key) for some time the memory limit can be surpassed by a noticeable amount.
Approximated LRU algorithm
Redis LRU algorithm is not an exact implementation. This means that Redis is not able to pick the best candidate for eviction, that is, the access that was accessed the most in the past. Instead it will try to run an approximation of the LRU algorithm, by sampling a small number of keys, and evicting the one that is the best (with the oldest access time) among the sampled keys.
However since Redis 3.0 the algorithm was improved to also take a pool of good candidates for eviction. This improved the performance of the algorithm, making it able to approximate more closely the behavior of a real LRU algorithm.
What is important about the Redis LRU algorithm is that you are able to tune the precision of the algorithm by changing the number of samples to check for every eviction. This parameter is controlled by the following configuration directive:
maxmemory-samples 5
The reason why Redis does not use a true LRU implementation is because it costs more memory. However the approximation is virtually equivalent for the application using Redis. The following is a graphical comparison of how the LRU approximation used by Redis compares with true LRU.