再见AI黑匣子:研究人员教会AI进行自我解释

简介: AI决策过程的黑匣子问题一直是AI领域最大的担忧之一,但近期黑匣子决策问题似乎被破解。来自加州大学伯克利分校、阿姆斯特丹大学、Facebook AI Research团队的研究人员创建出一个AI自我解释模型,该模型可使AI在回答问题时指出问题对应的证据,在回答相关图像问题时,其能够为其决策提供自然语言理由并指出图像显示证据。

来自加州大学伯克利分校、阿姆斯特丹大学、Facebook AI Research团队的研究人员创建出一个AI自我解释模型,该模型可使AI在回答问题时指出问题对应的证据,在回答相关图像问题时,其能够为其决策提供自然语言理由并指出图像显示证据。

 “黑匣子”变得透明,这是一件大事。

在许多环境中,深度模型既有效又可解释;先前可解释的模型是单峰模型,提供了基于图像的注意权重的可视化或基于文本的事后理由的生成。

这次的研究提出了一种多模式的解释方法,并且认为这两种模式提供了互补的说明性优势。

团队收集两个新的数据集来定义和评估这个任务,并提出一个新的模型,可以提供联合文本理性和可视化生成。我们的数据集定义了活动识别任务(ACT-X)和视觉问题解答任务(VQA-X)的分类决策的视觉和文本理由。

在数量上表明,使用文本解释进行培训不仅可以产生更好的文本理由模型,还可以更好地定位支持决策的证据。我们还定性地展示了视觉解释比文本解释更具洞察力的情况,反之亦然,支持我们的论点:多模式解释模型提供了超越单峰方法的显着优势。

3eea46c2cff21190852d8f4f42ed4f8f1b118e6e

VQA-X定性结果:对于每个图像,PJ-X模型提供了答案和理由,并指出了该理由的证据。

弄清楚为什么一个神经网络做出它所做的决定是人工智能领域最大的担忧之一。正如它所称的那样,黑盒问题实际上使我们不能相信AI系统。

像人类一样,它可以“指出”它用来回答问题的证据,并且通过文本可以描述它如何解释证据。它的开发旨在回答那些需要九岁小孩平均智力的问题。

这是人们第一次创建了一个可以用两种不同方式解释自己的系统:

我们的模型是第一个能够为决策提供自然语言理由并指向图像中的证据的人。

研究人员开发了AI来回答关于图像的简单语言查询。它可以回答关于给定场景中的对象和动作的问题。它通过描述它看到的内容并突出显示图像的相关部分来解释它的答案。

它并不总是让事情正确。在实验过程中,人工智能感到困惑,无法确定一个人是否在微笑,也无法分辨出一个人在使用吸尘器的人和一个正在使用吸尘器的人之间的区别。

但是,这是一个重点:当电脑出现问题时,我们需要知道原因。

为了达到任何可衡量的成熟度,AI的领域需要调试,错误检查和理解机器决策过程的方法。神经网络发展并成为我们数据分析的主要来源时尤其如此。

为人工智能展示其工作并以外行人员的角度解释自己,这是一个巨大的飞跃,可以避免每个人似乎都很担心的机器人启示。


原文发布时间为:2018-03-1

本文作者:艾霄葆

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:再见AI黑匣子:研究人员教会AI进行自我解释

相关文章
|
1月前
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
76 26
|
9天前
|
人工智能 自然语言处理 API
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
142 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
|
4月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
62 1
|
11天前
|
存储 人工智能
Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈
哈佛大学和麻省理工学院的研究人员最近发布了一项重磅研究,对Scaling Law在低精度量化中的应用提出严重质疑。研究表明,随着训练数据增加,低精度量化带来的性能损失也增大,且与模型大小无关。这挑战了通过增加规模提升性能的传统观点,提醒我们在追求效率时不能忽视性能损失。该研究结果在AI圈内引发广泛讨论,提示未来需探索其他方法来提高模型效率,如混合精度训练、模型压缩及新型硬件架构。论文地址:https://arxiv.org/pdf/2411.04330。
34 11
|
25天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
69 13
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
89 25
|
3月前
|
人工智能 开发者
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
56 2
|
3月前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
72 12
|
3月前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
4月前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
60 6

热门文章

最新文章