linux下的socket编程

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
.cn 域名,1个 12个月
简介: 一、为什么要进行socket编程     Linux操作系统下,网络是一个非常重要的方面,它继承了Unix家族的网络优势。在Linux下进行网络程序设计,一般都使用socket。

一、为什么要进行socket编程

    Linux操作系统下,网络是一个非常重要的方面,它继承了Unix家族的网络优势。在Linux下进行网络程序设计,一般都使用socket。所以,掌握linux网络程序设计的前提就是学好socket。
    Socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。
  Socket接口设计者起初把接口放在Unix操作系统中。网络的Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。 Socket也具有一个类似于打开文件的函数调用Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket(SOCK_STREAM)和数据报式Socket(SOCK_DGRAM)。流式是一种面向连接的Socket,针对于面向连接的 TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的 UDP服务应用。
    因而,如果想开发局域网的程序,使用UDP就可以了,比如局域网网络游戏,但是如果程序需要通过Internet的话,为了安全起见,则使用TCP更为合适。

二、linux下的socket编程的思想

img_c126186cc0f85c3691f5a6bbd9b92399.png

上图就是Linux系统下,服务器端和客户端的socket流程图。

其实很好理解,就像打电话,需要两个人:要打电话的我和要接听电话的我的领导。首先,手机必须开机,并且有信号,保证能够正常接听。这就是建立socket套接字。

其次,我开始拨号,对应着客户端的connect(),领导手机响了,对应着listen(),不过当然是listen到我的来电,否则他就一直放着电话,等着我报告。他按下接听键,就是accpet()。

接着,我开始向领导汇报工作,就是send(),他听到了我的汇报,就是recv(),然后,他说,“刘凯老师,你的说明很有力度,就这么办了”,这就是他的send(),然后我听到了领导的肯定,就是我recv()了。

最后,我们把电话一挂。大家都close()。

整个套接字的socket大致流程就是这个样子。

三、socket常用函数的详细说明

计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换。我们要讨论的第一个结构类型是:struct sockaddr,该类型是用来保存socket信息的: 
struct sockaddr {
  unsigned short sa_family; /* 地址族, AF_xxx */
  char sa_data[14]; /* 14 字节的协议地址 */
};
sa_family一般为AF_INET;sa_data则包含该socket的IP地址和端口号。
另外还有一种结构类型:
  struct sockaddr_in {
   short int sin_family; /* 地址族 */
   unsigned short int sin_port; /* 端口号 */
   struct in_addr sin_addr; /* IP地址 */
   unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大小 */
  };
  这个结构使用更为方便。sin_zero(它用来将sockaddr_in结构填充到与struct sockaddr同样的长度)应该用bzero()或memset()函数将其置为零。指向sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向 sockaddr_in的指针转换为指向sockaddr的指针;或者相反。sin_family通常被赋AF_INET;sin_port和 sin_addr应该转换成为网络字节优先顺序;而sin_addr则不需要转换。 
我们下面讨论几个字节顺序转换函数:
  htons()--"Host to Network Short" ; htonl()--"Host to Network Long"
  ntohs()--"Network to Host Short" ; ntohl()--"Network to Host Long"
  在这里, h表示"host" ,n表示"network",s 表示"short",l表示 "long"。

打开socket 描述符、建立绑定并建立连接
socket函数原型为: 
  int socket(int domain, int type, int protocol);
domain参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM;protocol通常赋值"0"。Socket()调用返回一个整型socket描述符,你可以在后面的调用使用它。 
  一旦通过socket调用返回一个socket描述符,你应该将该socket与你本机上的一个端口相关联(往往当你在设计服务器端程序时需要调用该函数。随后你就可以在该端口监听服务请求;而客户端一般无须调用该函数)。

Bind函数原型为:
  int bind(int sockfd,struct sockaddr *my_addr, int addrlen);
Sockfd是一个socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。 
最后,对于bind 函数要说明的一点是,你可以用下面的赋值实现自动获得本机IP地址和随机获取一个没有被占用的端口号: 
  my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */
  通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。Bind()函数在成功被调用时返回0;遇到错误时返回"-1"并将errno置为相应的错误号。另外要注意的是,当调用函数时,一般不要将端口号置为小于1024的值,因为1~1024是保留端口号,你可以使用大于1024中任何一个没有被占用的端口号。

Listen()——监听是否有服务请求
在服务器端程序中,当socket与某一端口捆绑以后,就需要监听该端口,以便对到达的服务请求加以处理。
  int listen(int sockfd, int backlog);
  Sockfd是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最大请求数,进入的连接请求将在队列中等待accept()它们。Backlog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。当listen遇到错误时返回-1,errno被置为相应的错误码。

accept()——连接端口的服务请求。
  当某个客户端试图与服务器监听的端口连接时,该连接请求将排队等待服务器accept()它。通过调用accept()函数为其建立一个连接, accept()函数将返回一个新的socket描述符,来供这个新连接来使用。而服务器可以继续在以前的那个 socket上监听,同时可以在新的socket描述符上进行数据send()(发送)和recv()(接收)操作:   
int accept(int sockfd, void *addr, int *addrlen);
  sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。错误发生时返回一个-1并且设置相应的errno值。
故服务器端程序通常按下列顺序进行函数调用:
  socket(); bind(); listen(); /* accept() goes here */

Connect()函数用来与远端服务器建立一个TCP连接

其函数原型为: 
  int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);
Sockfd是目的服务器的sockt描述符;serv_addr是包含目的机IP地址和端口号的指针。遇到错误时返回-1,并且errno中包含相应的错误码。进行客户端程序设计无须调用bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立连接并不需要关心,内核会自动选择一个未被占用的端口供客户端来使用。

Send()和recv()——数据传输
这两个函数是用于面向连接的socket上进行数据传输。 
Send()函数原型为:
  int send(int sockfd, const void *msg, int len, int flags);
Sockfd是你想用来传输数据的socket描述符,msg是一个指向要发送数据的指针。
Len是以字节为单位的数据的长度。flags一般情况下置为0(关于该参数的用法可参照man手册)。
char *msg = "Beej was here!"; int len, bytes_sent; ... ...
len = strlen(msg); bytes_sent = send(sockfd, msg,len,0); ... ...
  Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。所以需要对send()的返回值进行测量。当send()返回值与len不匹配时,应该对这种情况进行处理。

recv()函数原型为:
  int recv(int sockfd,void *buf,int len,unsigned int flags);
Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返

回实际上接收的字节数,或当出现错误时,返回-1并置相应的errno值。

Sendto()和recvfrom()——利用数据报方式进行数据传输
  在无连接的数据报socket方式下,由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址,sendto()函数原型为: 
  int sendto(int sockfd, const void *msg,int len,unsigned int flags,const struct sockaddr *to, int tolen); 
  该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。

Recvfrom()函数原型为:
  int recvfrom(int sockfd,void *buf,int len,unsigned int flags,struct sockaddr *from,int *fromlen);
  from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入from中的数据字节数。Recvfrom()函数返回接收到的字节数或

当出现错误时返回-1,并置相应的errno。
应注意的一点是,当你对于数据报socket调用了connect()函数时,你也可以利用 send()和recv()进行数据传输,

但该socket仍然是数据报socket,并且利用传输层的UDP服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。

Close()和shutdown()——结束数据传输
当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:

close(sockfd);
  你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。

  int shutdown(int sockfd,int how);
Sockfd的含义是显而易见的,而参数 how可以设为下列值:
  ·0-------不允许继续接收数据
  ·1-------不允许继续发送数据
  ·2-------不允许继续发送和接收数据,均为允许则调用close ()
shutdown在操作成功时返回0,在出现错误时返回-1(并置相应errno)。

DNS——域名服务相关函数
  由于IP地址难以记忆和读写,所以为了读写记忆方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数gethostbyname()就是完成这种转换的,函数原型为: 
  struct hostent *gethostbyname(const char *name);
函数返回一种名为hosten的结构类型,它的定义如下:
  struct hostent {
   char *h_name; /* 主机的官方域名 */
   char **h_aliases; /* 一个以NULL结尾的主机别名数组 */
   int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */
   int h_length; /*地址的字节长度 */
   char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/
  };
 #define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/

四、例子(源于网上,已将错误改正)

1、server.c:

#include
#include
#include
#include
#include
#include
#include
#include
#define SERVPORT 3333 /*服务器监听端口号 */
#define BACKLOG 10 /* 最大同时连接请求数 */
main()
{
  int sockfd,client_fd,sin_size; /*sock_fd:监听socket;client_fd:数据传输socket */
  struct sockaddr_in my_addr; /* 本机地址信息 */
  struct sockaddr_in remote_addr; /* 客户端地址信息 */
  if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
   perror("socket创建出错!"); exit(1);
  }
  my_addr.sin_family=AF_INET;
  my_addr.sin_port=htons(SERVPORT);
  my_addr.sin_addr.s_addr = INADDR_ANY;
  bzero(&(my_addr.sin_zero),8);
  if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1) {
    perror("bind出错!");
    exit(1);
  }
  if (listen(sockfd, BACKLOG) == -1) {
    perror("listen出错!");
    exit(1);
  }
  while(1) {
   sin_size = sizeof(struct sockaddr_in);
   if ((client_fd = accept(sockfd, (struct sockaddr *)&remote_addr, &sin_size)) == -1) {
      perror("accept出错");
      continue;
   }
   printf("received a connection from %s\n", inet_ntoa(remote_addr.sin_addr));
   if (!fork()) { /* 子进程代码段 */
     if (send(client_fd, "呵呵,成功了!\n", 26, 0) == -1)
     perror("send出错!");
     close(client_fd);
     exit(0);
   }
   close(client_fd);
   }
  }

接着,gcc -o server server.c生成server,在终端下运行,./server

2、guest.c

#include
#include
#include
#include
#include
#include
#include
#include
#define SERVPORT 3333
#define MAXDATASIZE 100 /*每次最大数据传输量 */
main(int argc, char *argv[]){
  int sockfd, recvbytes;
  char buf[MAXDATASIZE];
  struct hostent *host;
  struct sockaddr_in serv_addr;
  if (argc fprintf(stderr,"Please enter the server's hostname!\n");
exit(1);
}
  if((host=gethostbyname(argv[1]))==NULL) {
herror("gethostbyname出错!");
exit(1);
}
  if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1){
perror("socket创建出错!");
exit(1);
}
  serv_addr.sin_family=AF_INET;
  serv_addr.sin_port=htons(SERVPORT);
  serv_addr.sin_addr = *((struct in_addr *)host->h_addr);
  bzero(&(serv_addr.sin_zero),8);
  if (connect(sockfd, (struct sockaddr *)&serv_addr, \
   sizeof(struct sockaddr)) == -1) {
perror("connect出错!");
exit(1);
}
  if ((recvbytes=recv(sockfd, buf, MAXDATASIZE, 0)) ==-1) {
perror("recv出错!");
exit(1);
}
  buf[recvbytes] = '\0';
  printf("Received: %s",buf);
  close(sockfd);
}

执行gcc -o guest guest.c生成guest,运行./guest,可以看到客户端出现:呵呵,成功了!

相关文章
|
2月前
|
Shell Linux
Linux shell编程学习笔记30:打造彩色的选项菜单
Linux shell编程学习笔记30:打造彩色的选项菜单
|
17天前
|
运维 监控 Shell
深入理解Linux系统下的Shell脚本编程
【10月更文挑战第24天】本文将深入浅出地介绍Linux系统中Shell脚本的基础知识和实用技巧,帮助读者从零开始学习编写Shell脚本。通过本文的学习,你将能够掌握Shell脚本的基本语法、变量使用、流程控制以及函数定义等核心概念,并学会如何将这些知识应用于实际问题解决中。文章还将展示几个实用的Shell脚本例子,以加深对知识点的理解和应用。无论你是运维人员还是软件开发者,这篇文章都将为你提供强大的Linux自动化工具。
|
1月前
|
网络协议 Linux 网络性能优化
Linux基础-socket详解、TCP/UDP
综上所述,Linux下的Socket编程是网络通信的重要组成部分,通过灵活运用TCP和UDP协议,开发者能够构建出满足不同需求的网络应用程序。掌握这些基础知识,是进行更复杂网络编程任务的基石。
102 1
|
2月前
|
Shell Linux
Linux shell编程学习笔记82:w命令——一览无余
Linux shell编程学习笔记82:w命令——一览无余
|
2月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
88 6
|
1月前
|
网络协议 测试技术 网络安全
Python编程-Socket网络编程
Python编程-Socket网络编程
|
2月前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
132 3
|
2月前
|
Shell Linux Python
python执行linux系统命令的几种方法(python3经典编程案例)
文章介绍了多种使用Python执行Linux系统命令的方法,包括使用os模块的不同函数以及subprocess模块来调用shell命令并处理其输出。
30 0
|
3月前
|
项目管理 敏捷开发 开发框架
敏捷与瀑布的对决:解析Xamarin项目管理中如何运用敏捷方法提升开发效率并应对市场变化
【8月更文挑战第31天】在数字化时代,项目管理对软件开发至关重要,尤其是在跨平台框架 Xamarin 中。本文《Xamarin 项目管理:敏捷方法的应用》通过对比传统瀑布方法与敏捷方法,揭示敏捷在 Xamarin 项目中的优势。瀑布方法按线性顺序推进,适用于需求固定的小型项目;而敏捷方法如 Scrum 则强调迭代和增量开发,更适合需求多变、竞争激烈的环境。通过详细分析两种方法在 Xamarin 项目中的实际应用,本文展示了敏捷方法如何提高灵活性、适应性和开发效率,使其成为 Xamarin 项目成功的利器。
50 1
|
3月前
|
安全 Linux 开发工具
探索Linux操作系统:从命令行到脚本编程
【8月更文挑战第31天】在这篇文章中,我们将一起潜入Linux操作系统的海洋,从最基础的命令行操作开始,逐步深入到编写实用的脚本。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供新的视角和实用技能。我们将通过实际代码示例,展示如何在日常工作中利用Linux的强大功能来简化任务和提高效率。准备好了吗?让我们一起开启这段旅程,探索Linux的奥秘吧!