深度学习中,还有这15个未解难题

简介:
本文来自AI新媒体量子位(QbitAI)

认脸、翻译、合成语音……深度学习在很多问题上都取得了非常好的成绩。

那么,还有什么问题不能用深度学习来解决呢?

斯坦福大学在读博士Bharath Ramsundar列出了下面16个方面,希望能对今后的算法开发有所帮助。

量子位翻译了这篇文章,以下为译文。

1.众所周知,深度学习方法很难学习到输入样本的微小变化。当样本的颜色交换时,所构建的目标识别系统可能会完全崩溃。

2.基于梯度的网络训练过程相当缓慢。一般按照固定模式来实现多种梯度下降方法,但是这种方法很难用于高维数据的预测。

3.深度学习方法在处理条件约束方面的效果也不佳,不能像线性规划方法那样,能快速找到满足约束的解决方案。

4.在训练复杂模型时,网络相当不稳定。通常不能很好地训练神经图灵机和GAN网络,严重依赖网络的初始化方式。

5.深层网络能较好地应用于图像处理和自然语言分析中,但是不适合现实世界的实际问题,如提取因果结构等等。

6.在实际应用中,要考虑关键影响者检测的问题。在参议员投票的数据集中,应该如何检测出关键影响者,深度神经网络DNN还不能应用于此方面。

7.强化学习(Reinforcement learning)方法对输入数据非常挑剔,实际性能主要取决于调参技巧,虽然这个特殊问题仅存在于这个方面。

8.深度学习方法不容易理解未知实体,比如说当棒球击球手在视频中,深度学习不知道如何推断出屏幕外还有个投手。

9.实时训练深层网络几乎不可能,因此很难进行动态调整,上文已经提到网络训练缓慢的问题。

10.一般来说,网络需通过离线训练后才能进行智能辨识。

11.人们经常提出一些对深层网络的理论解释。但这可能不是一个大问题,人们才是一个真正的大问题。

12.目前很难确定深层网络学习到了什么。作为工程师的我们,怎样才能确保在网络训练过程中不存在偏见和种族歧视?

13.深度神经网络很难用来解决逻辑问题。3SAT求解器具有很强的能力,但是很难应用到深层网络。

14.深度神经网络在处理大维度的特征数据方面效果不佳。这种方法与强大的随机森林方法不同,在训练前需要大量的特征调整。

15.深度网络的超参数优化研究仍然处于起步阶段。研究者需要完成大量的计算或是手动调整许多网络结构。

以上这些并不是一个完整的列表,但是我觉得这些都是值得思考的问题。在这些问题的基础上,要思考:

这些问题是深层神经网络本身存在的问题,还是要被克服的工程挑战?

这些都很难说,其中的一些问题可能会得到解决,比如更多性能优秀的硬件被开发用于超参数自动搜索。有一些早期结构可以用来自动归一化和处理大维度的特征数据,因此处理特征的问题可能有所改善。

然而,逻辑、约束、隐藏结构和网络审查等问题可能会进行更深入地研究。我很愿意看到大家对这些问题提出质疑,深度学习的研究者通常都是很有才华和有想象力的。摩尔定律仍然适用于GPU性能曲线,TPU和定制硬件还需要多久才能上市?

所以我对这些挑战持乐观态度。尽管如此,我还是怀疑深度神经网络不足以实现通用人工智能,当然,这可能只是我的偏见,事件上的专家可能是预测上的菜鸟,我们花了太多时间钻研技术。

千万不要只知其然,而不知其所以然!

我不想把这个随笔写成一篇文章,不确定是否有未知的主题还未被列出。

最后,作者还说,把这篇随笔送给聪明的读者。

【完】

本文作者:王小新 
原文发布时间:2017-06-22
相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的新篇章:从理论到实践的飞跃####
本文深入剖析了深度学习的最新进展,探讨了其背后的理论基础与实际应用之间的桥梁。通过实例展示了深度学习如何革新计算机视觉、自然语言处理等领域,并展望了其未来可能带来的颠覆性变化。文章旨在为读者提供一个清晰的视角,理解深度学习不仅是技术的飞跃,更是推动社会进步的重要力量。 ####
157 61
|
4月前
|
机器学习/深度学习 人工智能 算法
人工智能与命运的交织:从机器学习到人生选择
【9月更文挑战第21天】本文将探讨人工智能(AI)如何在我们的生活中扮演着越来越重要的角色,以及它如何影响我们的决策和命运。我们将从AI的基本概念出发,逐步深入到机器学习的核心原理,最后讨论AI如何帮助我们在复杂的人生道路上做出更明智的选择。通过简单易懂的语言和实际代码示例,我们将揭示AI技术背后的奥秘,并展示如何将这些技术应用于日常生活中的实际问题解决。让我们一起探索这个充满无限可能的AI世界,发现它如何塑造我们未来的命运。
59 1
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
揭秘深度学习的幕后英雄:如何用智慧和策略战胜训练中的怪兽!
【8月更文挑战第16天】深度学习之路坎坷,如攀险峰,每一步都考验耐心与智慧。超参数调试、数据质量、计算资源、过拟合及收敛难题是常遇挑战。通过网格搜索找最优、数据增强平衡样本、混合精度与梯度累积节省资源、正则化及Dropout防过拟合、以及使用高级优化器助收敛,这些问题得以缓解。每克服一个难关,都是向成功迈进一大步,同时也深化了对深度学习的理解与掌握。
54 4
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的突破与挑战:探索未来技术前沿
本文深入探讨了深度学习领域的最新进展、面临的主要挑战以及未来的发展趋势。文章首先介绍了深度学习的基本概念和应用领域,然后详细分析了当前深度学习技术的关键问题,包括数据依赖性、模型泛化能力、计算资源需求等。最后,文章展望了深度学习的未来发展方向,如模型可解释性、小样本学习、跨模态学习等,旨在为读者提供对深度学习领域全面而深入的理解。
|
6月前
|
机器学习/深度学习 自然语言处理 算法
深度学习的新篇章:从理论到实践
本文将深入探讨深度学习的理论基础,以及如何将这些理论应用到实际问题中。我们将从深度学习的基本概念开始,然后探讨一些常见的深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN)。我们还将讨论深度学习的一些挑战,如过拟合和欠拟合,以及如何通过正则化和优化算法来解决这些问题。最后,我们将通过一些实例来展示深度学习在图像识别、语音识别和自然语言处理等领域的应用。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习技术的崭新前沿与应用展望
深度学习技术作为人工智能领域的热点之一,正不断推动着科学技术的发展。本文将探讨深度学习技术的最新进展,以及其在各个领域中的应用前景,从自然语言处理到计算机视觉,从医疗保健到智能交通,深度学习正为我们的生活和工作带来巨大的变革。
|
机器学习/深度学习 人工智能 算法
深度学习发力,预测衰老性疾病取得新进展
遗传和环境因素都会影响与年龄有关的黄斑变性(AMD),而黄斑变性是致盲的主要原因。以往 AMD 的严重性主要通过视网膜眼底图像来衡量,近年来一些机器学习方法也被运用到通过图像数据来预测 AMD 的进展。
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能(系列):深度学习是否过分夸大?
深度学习可能不是过分夸大,也许它只是没有很好地被理解!
1998 0
|
机器学习/深度学习 人工智能 自动驾驶
吴恩达:模拟人脑,未来AI执行精神层面任务有望快过人类!
AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应从大自然中寻找灵感,让AI建立关于世界的“心理模型”。
1415 0