利用卷积神经网络(cnn)实现文本分类

简介:

卷积神经网络在情感分析中取得了很好的成果,相比于之前浅层的机器学习方法如NB、SVM效果更好,特别实在数据集较大的情况下,并且CNN不用我们手动去提取特征,原浅层ML是需要进行文本特征提取、文本特征表示、归一化、最后进行文本分类,文本特征提取主要可以分为四步:(1):对全部训练文档进行分词,由这些词作为向量的维数来表示文本;(2):统计每一类文档中所有出现的词语及其频率,然后过滤,剔除停用词和单字词;(3):统计每一类内出现词语的总词频,并取若干个频率更高的词汇作为这一类的特征词集;(4):去除每一类别中都出现的词,合并所有类别的特征词集,形成总特征词集,最后得到的特征词集是我们用到的特征集合,再用该集合去筛选测试集中的特征。文本的特征表示是利用TF-IDF公式来计算词的权值,这也充分利用的是特征提取时提取的特征来计算特征权值大小的,归一化处理需要处理的数据,经过处理后限制在一定范围内,经过处理后,我们原来的文本信息已经抽象成一个向量化的样本集,然后将样本集和训练好的模板进行相似度计算,若属于该类别,则与其他类别的模板文件进行计算,直到分进相应的类别,这是浅层ML进行文本分类的方式;

CNN进行文本分类相对简单一些,我结合最近做的一些实验总结了一下:

在利用CNN进行文本分类的时候,首先要将原始文本进行预处理,主要还是分词、去除停用词等,然后对预处理后的文本进行向量化利用word2vec,我利用的时word2vec中的skip-gram模型,将搜狗数据集表示为了200维的词向量形式;转化为词向量后就可以将每一句话转化为一个矩阵的形式,这样就跟利用CNN处理图像分类很相似;

说一下实验,我的实验环境:

tensorflow1.2、gpu1050Ti、Ubuntu16.04、pycharm、python2.7

# encoding=utf-8
from __future__ import unicode_literals

import tensorflow as tf
import numpy as np


class TextCNN(object):
    """
    使用CNN用于情感分析
    整个CNN架构包括词嵌入层,卷积层,max-pooling层和softmax
    """
    def __init__(
      self, sequence_length, num_classes,vocab_size,embedding_size, embedding_table,
            filter_sizes, num_filters, l2_reg_lambda=0.0):

        # 输入,输出,dropoutplaceholder
        self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
        self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0)

        # 词嵌入层
        with tf.device('/cpu:0'), tf.name_scope("embedding"):
            W = tf.Variable(embedding_table,name="W")
            self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)

        # 生成卷积层和max-pooling        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                # h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                h=tf.nn.relu6(tf.nn.bias_add(conv,b),name="relu")
                # Maxpooling over the outputs
                # pooled = tf.nn.max_pool(
                #     h,
                #     ksize=[1, sequence_length - filter_size + 1, 1, 1],
                #     strides=[1, 1, 1, 1],
                #     padding='VALID',
                #     name="pool")
                # pooled_outputs.append(pooled)
                pooled = tf.nn.avg_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)

        # max-pooling层的各种特征整合在一起
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs,3)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

        # 添加全连接层,用于分类
        with tf.name_scope("full-connection"):
            W_fc1 = tf.Variable(tf.truncated_normal([num_filters_total,500], stddev=0.1))
            b_fc1 = tf.Variable(tf.constant(0.1,shape=[500]))
            self.h_fc1 = tf.nn.relu6(tf.matmul(self.h_pool_flat, W_fc1) + b_fc1)

        # 添加dropout层用于缓和过拟化
        with tf.name_scope("dropout"):
            # self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
            self.h_drop = tf.nn.dropout(self.h_fc1, self.dropout_keep_prob)

        # 产生最后的输出和预测
        with tf.name_scope("output"):
            # W = tf.get_variable(
            #     "W",
            #     shape=[num_filters_total, num_classes],
            #     initializer=tf.contrib.layers.xavier_initializer())
            W = tf.get_variable(
                "W",
                shape=[500, num_classes],
                initializer=tf.contrib.layers.xavier_initializer())
            b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            l2_loss += tf.nn.l2_loss(W)
            l2_loss += tf.nn.l2_loss(b)
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
            self.predictions = tf.argmax(self.scores, 1, name="predictions")

        # 定义模型的损失函数
        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss

        # 定义模型的准确率
        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")

以上时TextCNN的模型结构代码,然后开始进行train,并利用summary和checkpoints来记录模型和训练时的参数等等,利用十折交叉验证来产生准确率,最后利用tensorboard查看accuracy、loss、w、b等等变化图;训练py的代码:
 
#! /usr/bin/env python
# encoding=utf-8
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_loader
from cnn_graph import TextCNN
from tensorflow.contrib import learn
from sklearn import cross_validation
import preprocessing
# tf.global_variables
# 伴随tensorflowsummarycheckout
# ==================================================

# Model Hyperparameters
tf.flags.DEFINE_integer("embedding_dim", 200, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 40, "Number of filters per filter size (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 3.0, "L2 regularizaion lambda (default: 0.0)")

# Training parameters
tf.flags.DEFINE_integer("batch_size", 50, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 100, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")

# w2v文件路径
tf.flags.DEFINE_string("w2v_path", "./w2v_model/retrain_vectors_100.bin", "w2v file")
tf.flags.DEFINE_string("file_dir","./data_process/jd","train/test dataSet")

FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")


# Data Preparatopn
# ==================================================

# Load data
print("Loading data...")
files = ["reviews.neg","reviews.pos"]
# 加载所有的未切分的数据
x_text, y_labels,neg_examples,pos_examples = data_loader.\
    load_data_and_labels(data_dir=FLAGS.file_dir,files=files,splitable=False)

# 获取消极数据的2/3,得到的评论的长度离散度更低
neg_accept_length = preprocessing.freq_factor(neg_examples,
                                         percentage=0.8, drawable=False)
neg_accept_length = [item[0] for item in neg_accept_length]
neg_examples = data_loader.load_data_by_length(neg_examples,neg_accept_length)

# 获取积极数据的2/3,得到的评论的长度离散度更低
pos_accept_length = preprocessing.freq_factor(pos_examples,
                                         percentage=0.8, drawable=False)
pos_accept_length = [item[0] for item in pos_accept_length]
pos_examples = data_loader.load_data_by_length(pos_examples,pos_accept_length)

x_text = neg_examples + pos_examples
neg_labels = [[1,0] for _ in neg_examples]
pos_labels = [[0,1] for _ in pos_examples]
y_labels = np.concatenate([neg_labels,pos_labels], axis=0)
print("Loading data finish")

# Build vocabulary
max_document_length = max([len(x.split(" ")) for x in x_text]) # 最长的句子的长度
print(max_document_length)
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
x = np.array(list(vocab_processor.fit_transform(x_text)))

# 加载提前训练的w2v数据集
word_vecs = data_loader.load_bin_vec(fname=FLAGS.w2v_path,
                         vocab=list(vocab_processor.vocabulary_._mapping),
                                     ksize=FLAGS.embedding_dim)
# 加载嵌入层的table
W = data_loader.get_W(word_vecs=word_vecs,
                  vocab_ids_map=vocab_processor.vocabulary_._mapping,
                  k=FLAGS.embedding_dim,is_rand=False)

# 随机化数据
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y_labels)))
x_shuffled = x[shuffle_indices]
y_shuffled = y_labels[shuffle_indices]

out_path = os.path.abspath(os.path.join(os.path.curdir, "runs","parameters"))
parameters = "新全连接+jd数据+10\n" \
             "embedding_dim: {},\n" \
             "filter_sizes:{},\n" \
             "num_filters:{},\n" \
             "dropout_keep_prob:{},\n" \
             "l2_reg_lambda:{},\n" \
             "num_epochs:{},\n" \
             "batch_size:{}".format(FLAGS.embedding_dim,FLAGS.filter_sizes,FLAGS.num_filters,
                                    FLAGS.dropout_keep_prob,FLAGS.l2_reg_lambda,FLAGS.num_epochs,
                                    FLAGS.batch_size)
open(out_path, 'w').write(parameters)

# Training
# ==================================================
def train(X_train, X_dev, x_test, y_train, y_dev, y_test):
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
          allow_soft_placement=FLAGS.allow_soft_placement,
          log_device_placement=FLAGS.log_device_placement)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            cnn = TextCNN(
                sequence_length=max_document_length,
                num_classes=2,
                vocab_size=len(vocab_processor.vocabulary_),
                embedding_size=FLAGS.embedding_dim,
                embedding_table=W,
                filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
                num_filters=FLAGS.num_filters,
                l2_reg_lambda=FLAGS.l2_reg_lambda)

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-3)
            grads_and_vars = optimizer.compute_gradients(cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)


            # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables())

            # Write vocabulary
            vocab_processor.save(os.path.join(out_dir, "vocab"))

            # Initialize all variables
            # sess.run(tf.initialize_all_variables())
            sess.run(tf.global_variables_initializer())

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run(
                    [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                # _, step, loss, accuracy = sess.run(
                #     [train_op, global_step, cnn.loss, cnn.accuracy],
                #     feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                  cnn.input_x: x_batch,
                  cnn.input_y: y_batch,
                  cnn.dropout_keep_prob: 1.0
                }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
                    feed_dict)
                # step, loss, accuracy = sess.run(
                #     [global_step, cnn.loss, cnn.accuracy],
                #     feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                if writer:
                    writer.add_summary(summaries, step)



            # Generate batches
            batches = data_loader.batch_iter(
                list(zip(X_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
            # Training loop. For each batch...
            for batch in batches:
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % FLAGS.evaluate_every == 0:
                    print("\nEvaluation:")
                    dev_step(X_dev, y_dev, writer=dev_summary_writer)
                    # dev_step(X_dev, y_dev, writer=None)
                    print("")
                if current_step % FLAGS.checkpoint_every == 0:
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))

            # Test loop
            # Generate batches for one epoch
            batches = data_loader.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
            # Collect the predictions here
            all_predictions = []
            for x_test_batch in batches:
                batch_predictions = sess.run(cnn.predictions, {cnn.input_x: x_test_batch, cnn.dropout_keep_prob: 1.0})
                all_predictions = np.concatenate([all_predictions, batch_predictions])

            correct_predictions = float(sum(
                all_predictions == np.argmax(y_test,axis=1)))

            print("Total number of test examples: {}".format(len(y_test)))
            print("Accuracy: {:g}".format(correct_predictions / float(len(y_test))))
            # open(os.path.join(out_dir,"test"),'a').write("Accuracy: {:g}".format(correct_predictions / float(len(y_test))))
            out_path = os.path.abspath(os.path.join(os.path.curdir, "runs","test"))
            open(out_path,'a').write("{:g},".format(correct_predictions / float(len(y_test))))
            print("\n写入成功!\n")


# cross-validation
kf = cross_validation.KFold(len(x_shuffled), n_folds=3)
for train_index, test_index in kf:
    X_train_total = x_shuffled[train_index]
    y_train_total = y_shuffled[train_index]
    x_test = x_shuffled[test_index]
    y_test = y_shuffled[test_index]

    # 分割训练集与验证集
    X_train, X_dev, y_train, y_dev = cross_validation.train_test_split(
        X_train_total, y_train_total, test_size=0.2, random_state=0)

    print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
    print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
训练完成后准确率83%左右,还需要在进一步进行改进来提升正确率,比如利用chunk max-pooling方法代替max-pooling,利用集成的方法,因为word embedding词忽略了当前上下文的含义,潜在认为相同词在不同文本中的含义相同,所以可以利用词义消歧来提升其正确率等等;
训练模型保存在checkpoints中,由model-4000.index,model-4000.meta,model-4000.data等;
最后tensorboard --logdir  /home/yang/PycharmProjects/cnn-text-classification-master/runs/1515468832
/home/yang/PycharmProjects/cnn-text-classification-master/runs/1515468832/checkpoints/model-4300

Total number of test examples: 1333

Accuracy: 0.825956


转自:http://blog.csdn.net/gentelyang/article/details/79011194

目录
相关文章
|
2天前
|
机器学习/深度学习 自然语言处理 自动驾驶
CNN的魅力:探索卷积神经网络的无限可能
卷积神经网络(Convolutional Neural Networks, CNN)作为人工智能的重要分支,在图像识别、自然语言处理、医疗诊断及自动驾驶等领域展现了卓越性能。本文将介绍CNN的起源、独特优势及其广泛应用,并通过具体代码示例展示如何使用TensorFlow和Keras构建和训练CNN模型。
|
2天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
3天前
|
编解码 人工智能 文件存储
卷积神经网络架构:EfficientNet结构的特点
EfficientNet是一种高效的卷积神经网络架构,它通过系统化的方法来提升模型的性能和效率。
9 1
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出卷积神经网络(CNN)的奥秘
【9月更文挑战第3天】在人工智能的浪潮中,卷积神经网络(CNN)无疑是最耀眼的明星之一。本文将通过浅显易懂的语言,带你一探CNN的核心原理和应用实例。从图像处理到自然语言处理,CNN如何改变我们对数据的解读方式?让我们一起走进CNN的世界,探索它的魅力所在。
|
2天前
|
机器学习/深度学习 人工智能 监控
深度学习浪潮中的轻舟:探索卷积神经网络的奥秘
在这个数据泛滥的时代,深度学习如同一艘巨轮,在知识的海洋中破浪前行。然而,在这艘巨轮上,有一个小小的角落常常被人忽视—那就是卷积神经网络(CNN)。本文将带领读者一探究竟,从CNN的核心概念到其在实际中的应用,我们将用通俗易懂的语言,揭开这一技术神秘面纱,让每一位对深度学习感兴趣的朋友都能轻松理解并应用CNN。
10 0
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
1月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
33 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
1月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
33 0