linux的64位操作系统对32位程序的兼容-全面分析

简介:
1.结构体ioctl_trans:
struct ioctl_trans {
    unsigned long cmd;
    ioctl_trans_handler_t handler;
    struct ioctl_trans *next;
};
该结构体提供了一个粘合层,用户可以动态注册一个ioctl_trans以便其提供64位和32位的粘合:
extern int register_ioctl32_conversion(unsigned int cmd,
                ioctl_trans_handler_t handler);
extern int unregister_ioctl32_conversion(unsigned int cmd);
整个系统的ioctl_trans连接成一个哈希表,放在ioctl32_hash_table变量中。每一个ioctl_trans的handler都是一个回调函数,在其中将64位的数据和32位的数据类型进行统一,统一成64位可以正确识别和处理的,以防在后续的64位代码中出错,比如一个32位的signed int为-1,需要将之转化成64个1而不是32个0加上32个1。
2.一套完整的系统调用:
如果不这样的话,32位程序的系统调用如何被路由到通过ioctl_trans们进行粘合的代码就成了问题,要知道x86-64已经不使用int 0x80作为触发系统调用的机制了,而使用syscall指令来触发。那么原来的32位程序都是用int 0x80来触发的,这下怎么办?办法就是仍然保留0x80号中断号,将其处理程序设置成ia32_syscall,它在ia32_sys_call_table中找具体的系统调用处理函数,具体在arch/x86_64/ia32/ia32entry.S中:
ENTRY(ia32_syscall)
        CFI_STARTPROC
        swapgs
        sti
        movl %eax,%eax
        pushq %rax
        cld
        SAVE_ARGS 0,0,1
        GET_THREAD_INFO(%r10)
        testl $(_TIF_SYSCALL_TRACE|_TIF_SYSCALL_AUDIT),threadinfo_flags(%r10)
        jnz ia32_tracesys
ia32_do_syscall:
        cmpl $(IA32_NR_syscalls),%eax
        jae  ia32_badsys
        IA32_ARG_FIXUP
        call *ia32_sys_call_table(,%rax,8) # xxx: rip relative
...
ia32_sys_call_table:
        .quad sys_restart_syscall
        .quad sys_exit
        .quad stub32_fork
        .quad sys_read
...
    .quad compat_sys_ioctl
...
在arch/x86_64/kernel/traps.c的trap_init函数中将ia32_syscall设置成0x80号中断的处理程序:
set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);//#define IA32_SYSCALL_VECTOR 0x80
那么使用sysenter的怎么办呢? 这是通过在exec的时候由内核检测到其是32位程序是动态将处理代码map到gate处的,要知道x86-64也不使用sysenter机制进行系统调用。那64位的x86-64怎么系统调用呢?在arch/x86-64/kernel/entry.S中有ENTRY(system_call)这个标志,在arch/x86_64/kernel/setup64.c中的syscall_init函数中有以下一行:
wrmsrl(MSR_LSTAR, system_call);
可见64位的x86-64是通过一个MSR寄存器来保存系统调用处理地址的,而不再是通过中断。至于说机器如何处理这个信息以及这个寄存器如何影响系统运行,这已经到x86-64体系的cpu实现硬件问题了,和本文的linux系统的要旨无关,此处简略(再说不简略也不行啊,我也不会啊)。
3.总结
由于硬件指令的兼容,32位的程序在用户态不受任何影响的运行,由于内核保留了0x80号中断作为32位程序的系统调用服务,因此32位程序可以安全触发0x80号中断使用系统调用,由于内核为0x80中断安排了另一套全新的系统调用表,因此可以安全地转换数据类型成一致的64位类型,再加上应用级别提供了两套c库,可以使64位和32位程序链接不同的库。因此linux的64-32兼容搞得非常好。
     为了看一下在x86-64上64位程序和32位程序是如何执行系统调用的,写一个最简单的测试程序:
#include <sys/types.h>
#include <unistd.h>
int main()
{
        getpid();
}
之所以选择getpid是因为它没有参数,最简单,将之在Red Hat 32位机器上按照如下命令行编译:
gcc test.c -o test-32 -g
然后再将之在64位机器上同样方式编译,只是可执行文件名字变为test-64。接下来首先gdb test-32:
(gdb) b main
...
(gdb) r
...
(gdb) b getpid
Breakpoint 2 at 0xf7f3d430
(gdb) disassemble  0xf7f3d430 0xf7f3d43a
0xf7f3d430 <getpid+0>:  mov    $0x14,%eax    #0x14是20,正是getpid的系统调用号
0xf7f3d435 <getpid+5>:  int    $0x80         #32位程序以int 0x80触发系统调用
0xf7f3d437 <getpid+7>:  ret    
0xf7f3d438 <getpid+8>:  nop    
0xf7f3d439 <getpid+9>:  nop    
End of assembler dump.
(gdb)   
结果全部在,可见即使在64位机器上,32位程序仍然使用int 0x80触发系统调用,在内核中已经注册了0x80的中断处理函数。接下来再试一下64位的程序如何触发系统调用,执行gdb test-64:
(gdb) b main
...
(gdb) r
...
(gdb) b getpid
Breakpoint 2 at 0x32fbf90f40
(gdb) disassemble 0x32fbf90f40 0x32fbf90f70
Dump of assembler code from 0x32fbf90f40 to 0x32fbf90f70:
0x00000032fbf90f40 <getpid+0>:  mov    %fs:0x94,%edx
0x00000032fbf90f48 <getpid+8>:  test   %edx,%edx
0x00000032fbf90f4a <getpid+10>: mov    %edx,%eax
0x00000032fbf90f4c <getpid+12>: jle    0x32fbf90f50 <getpid+16>
0x00000032fbf90f4e <getpid+14>: repz retq 
0x00000032fbf90f50 <getpid+16>: jne    0x32fbf90f5e <getpid+30>
0x00000032fbf90f52 <getpid+18>: mov    %fs:0x90,%eax
0x00000032fbf90f5a <getpid+26>: test   %eax,%eax
0x00000032fbf90f5c <getpid+28>: jne    0x32fbf90f4e <getpid+14>
0x00000032fbf90f5e <getpid+30>: mov    $0x27,%eax #系统调用号装入eax
0x00000032fbf90f63 <getpid+35>: syscall         #执行系统调用
0x00000032fbf90f65 <getpid+37>: test   %edx,%edx
0x00000032fbf90f67 <getpid+39>: jne    0x32fbf90f4e <getpid+14>
0x00000032fbf90f69 <getpid+41>: mov    %eax,%fs:0x90
值得注意的是,在2.6.9内核的x86-64机器上,getpid和32位机器的getpid系统调用号有所不同,在64位上是39号,定义在include/asm-x86_64/unistd.h:
#define __NR_getpid                             39
__SYSCALL(__NR_getpid, sys_getpid)
而刚才看到过,32位兼容的getpid的系统调用号为20,定义在arch/x86_64/ia32/ia32entry.S中:
ia32_sys_call_table:
...
    .quad sys_getpid                /* 20 */
...

PS:千万不要觉得test.c很简单然后就stepi单指令跟踪哦,因为这会涉及到一大堆跳转,如果你不明白链接的知识,不了解GOT和PIC的话,那就麻烦大了,因此还是直接在getpid处下断比较直观,如果你想顺便把代码重定位和GOT等玩意儿搞了的话,也可以试一下,反正在调试器面前,整个地址空间都会暴露,想看什么都行,当然,要学会让/proc/<pid>/maps等文件帮忙哦。



 本文转自 dog250 51CTO博客,原文链接:http://blog.51cto.com/dog250/1271104

相关实践学习
阿里云图数据库GDB入门与应用
图数据库(Graph Database,简称GDB)是一种支持Property Graph图模型、用于处理高度连接数据查询与存储的实时、可靠的在线数据库服务。它支持Apache TinkerPop Gremlin查询语言,可以帮您快速构建基于高度连接的数据集的应用程序。GDB非常适合社交网络、欺诈检测、推荐引擎、实时图谱、网络/IT运营这类高度互连数据集的场景。 GDB由阿里云自主研发,具备如下优势: 标准图查询语言:支持属性图,高度兼容Gremlin图查询语言。 高度优化的自研引擎:高度优化的自研图计算层和存储层,云盘多副本保障数据超高可靠,支持ACID事务。 服务高可用:支持高可用实例,节点故障迅速转移,保障业务连续性。 易运维:提供备份恢复、自动升级、监控告警、故障切换等丰富的运维功能,大幅降低运维成本。 产品主页:https://www.aliyun.com/product/gdb
相关文章
|
5天前
|
存储 移动开发 Linux
Linux系统之部署h5ai目录列表程序
【5月更文挑战第3天】Linux系统之部署h5ai目录列表程序
18 1
|
2天前
|
存储 Linux C语言
Linux:冯·诺依曼结构 & OS管理机制
Linux:冯·诺依曼结构 & OS管理机制
8 0
|
11小时前
|
Linux
|
1天前
|
存储 Shell Linux
操作系统实战(一)(linux+C语言)
本篇文章重点在于利用linux系统的完成操作系统的实验,巩固课堂知识
|
1天前
|
存储 Linux 编译器
【Linux】详解动态库链接和加载&&对可执行程序底层的理解
【Linux】详解动态库链接和加载&&对可执行程序底层的理解
|
1天前
|
Linux C++
【Linux】详解进程程序替换
【Linux】详解进程程序替换
|
1天前
|
Linux Shell
Linux操作系统下查找大文件或目录的技巧
Linux操作系统下查找大文件或目录的技巧
|
2天前
|
算法 Ubuntu Linux
为什么Linux不是实时操作系统
本文探讨了Linux为何不是实时操作系统(RTOS)。实时性关乎系统对事件的确定性响应时间,而Linux虽能保证调度执行的实时任务,但无法确保中断响应时间、中断处理时间和任务调度时间的确定性。中断响应时间受中断屏蔽时间影响,Linux中无法确保;中断处理时间因不支持中断嵌套而不确定;任务调度时间虽快,但调度点的限制影响实时性。Linux的定位是通用操作系统,追求平均性能而非绝对实时性。为改善实时性,Linux提供了不同抢占模型,如可抢占内核(Low-Latency Desktop)和PREEMPT-RT补丁,后者接近硬实时但牺牲了吞吐量。PREEMPT-RT正逐渐成为Linux实时增强的标准。
9 1
为什么Linux不是实时操作系统
|
2天前
|
存储 Ubuntu Linux
xenomai3+linux构建linux实时操作系统-基于X86_64和arm
Xenomai是一个实时性解决方案,通过在Linux上添加实时内核Cobalt来增强实时性能。它有三个主要部分:libcobalt(用户空间实时库)、Cobalt(内核空间实时内核)和硬件架构特定层(ipipe-core或dovetail)。ipipe-core适用于Linux 5.4以下版本,而dovetail用于5.4及以上版本。本文介绍了在X86 Ubuntu环境下,如何编译Xenomai内核,搭建应用环境,包括配置、编译、安装和实时性测试。对于其他硬件架构,如ARM和ARM64,步骤类似。文章还提到了Xenomai与Linux内核版本的兼容性和实时性测试结果。
11 0
xenomai3+linux构建linux实时操作系统-基于X86_64和arm
|
2天前
|
消息中间件 测试技术 Linux
linux实时操作系统xenomai x86平台基准测试(benchmark)
本文是关于Xenomai实时操作系统的基准测试,旨在评估其在低端x86平台上的性能。测试模仿了VxWorks的方法,关注CPU结构、指令集等因素对系统服务耗时的影响。测试项目包括信号量、互斥量、消息队列、任务切换等,通过比较操作前后的时戳来测量耗时,并排除中断和上下文切换的干扰。测试结果显示了各项操作的最小、平均和最大耗时,为程序优化提供参考。注意,所有数据基于特定硬件环境,测试用例使用Alchemy API编写。
9 0
linux实时操作系统xenomai x86平台基准测试(benchmark)