iOS开发系列--C语言之构造类型

简介:

概述

在第一节中我们就提到C语言的构造类型,分为:数组、结构体、枚举、共用体,当然前面数组的内容已经说了很多了,这一节将会重点说一下其他三种类型。

  1. 结构体
  2. 枚举
  3. 共用体

结构体

数组中存储的是一系列相同的数据类型,那么如果想让一个变量存储不同的数据类型就要使用结构体,结构体定义类似于C++、C#、Java等高级语言中类的定义,但事实上它们又有着很大的区别。结构体是一种类型,并非一个变量,只是这种类型可以由其他C语言基本类型共同组成。

//
//  main.c
//  ConstructedType
//
//  Created by Kenshin Cui on 14-7-18.
//  Copyright (c) 2014年 Kenshin Cui. All rights reserved.
//

#include <stdio.h>

//结构体类型Date
struct Date{
    int year;
    int month;
    int day;
};

struct Person{
    char *name;
    int age;
    struct Date birthday;//一个结构体中使用了另一个结构体类型,结构体类型变量声明前必须加上struct关键字
    float height;
};

int main(int argc, const char * argv[]) {
    struct Person p={"Kenshin",28,{1986,8,8},1.72};
    //定义结构体变量并初始化,不允许先定义再直接初始化,例如:struct Person p;p={"Kenshin",28,{1986,8,8},1.72};是错误的,但是可以分别赋值,例如p.name="Kenshin"
    
    printf("name=%s,age=%d,birthday=%d-%d-%d,height=%.2f\n",p.name,p.age,p.birthday.year,p.birthday.month,p.birthday.day,p.height); 
    //结果:name=Kenshin,age=28,birthday=1986-8-8,height=1.72,结构体的引用是通过"结构体变量.成员名称"(注意和结构体指针访问结构体成员变量区分,结构体指针使用p->a的形式访问)
    
    printf("len(Date)=%lu,len(Person)=%lu\n",sizeof(struct Date),sizeof(struct Person)); 
    //结果:len(Date)=12,len(Person)=32
    
    return 0;
}

对于上面的例子需要做出如下说明:

  1. 可以在定义结构体类型的同时声明结构体变量;
  2. 如果定义结构体类型的同时声明结构体变量,此时结构体名称可以省略;
  3. 定义结构体类型并不会分配内存,在定义结构体变量的时候才进行内存分配(同基本类型时类似的);
  4. 结构体类型的所占用内存大型等于所有成员占用内存大小之和(如果不考虑内存对齐的前提下);

对第4点需要进行说明,例如上面代码是在64位编译器下运行的结果(int长度4,char长度1,float类型4),Date=4+4+4=12。但是对于Person却没有那么简单了,因为按照正常方式计算Person=8+4+12+4=28,但是从上面代码中给出的结果是32,为什么呢?这里不得不引入一个概念“内存对齐”,关于内存对齐的概念在这里不做详细说明,大家需要了解的是:在Mac OS X中对齐参数默认为8(可以通过在代码中添加#pragma pack(8)改变对齐参数),如果结构体中的类型不大于8,那么结构体长度就是其成员类型之和,但是如果成员变量的长度大于这个对齐参数那么得到的结果就不一定是各个成员变量之和了。Person类型的长度之所以是32,其实主要原因是因为Date类型长度12在存储时其偏移量12不是8的倍数,考虑到内存对齐的原因需要添加4个补齐长度,这里使用表格的形式列出了具体原因:

memoryAlign

表格具体来源请观看下面的视频(注意由于录制软件的原因前几秒不清晰但是不影响分析):

接下来看一下结构体数组、指向结构体的指针:

//
//  main.c
//  ConstructedType
//
//  Created by Kenshin Cui on 14-7-18.
//  Copyright (c) 2014年 Kenshin Cui. All rights reserved.
//

#include <stdio.h>

struct Date{
    int year;
    int month;
    int day;
};

struct Person{
    char *name;
    int age;
    struct Date birthday;
    float height;
};

void changeValue(struct Person person){
    person.height=1.80;
}

int main(int argc, const char * argv[]) {
    struct Person persons[]={
        {"Kenshin",28,{1986,8,8},1.72},
        {"Kaoru",27,{1987,8,8},1.60},
        {"Rosa",29,{1985,8,8},1.60}
    };
    for (int i=0; i<3; ++i) {
        printf("name=%s,age=%d,birthday=%d-%d-%d,height=%.2f\n",
               persons[i].name,
               persons[i].age,
               persons[i].birthday.year,
               persons[i].birthday.month,
               persons[i].birthday.day,
               persons[i].height);
    }
    /*输出结果:
     name=Kenshin,age=28,birthday=1986-8-8,height=1.72
     name=Kaoru,age=27,birthday=1987-8-8,height=1.60
     name=Rosa,age=29,birthday=1985-8-8,height=1.60
     */
    
    
    
    struct Person person=persons[0];
    changeValue(person);
    printf("name=%s,age=%d,birthday=%d-%d-%d,height=%.2f\n",
           persons[0].name,
           persons[0].age,
           persons[0].birthday.year,
           persons[0].birthday.month,
           persons[0].birthday.day,
           persons[0].height);
    /*输出结果:
     name=Kenshin,age=28,birthday=1986-8-8,height=1.72
     */
    
    
    struct Person *p=&person;
    printf("name=%s,age=%d,birthday=%d-%d-%d,height=%.2f\n",
           (*p).name,
           (*p).age,
           (*p).birthday.year,
           (*p).birthday.month,
           (*p).birthday.day,
           (*p).height);
    /*输出结果:
     name=Kenshin,age=28,birthday=1986-8-8,height=1.72
     */
    printf("name=%s,age=%d,birthday=%d-%d-%d,height=%.2f\n",
           p->name,
           p->age,
           p->birthday.year,
           p->birthday.month,
           p->birthday.day,
           p->height);
    /*输出结果:
     name=Kenshin,age=28,birthday=1986-8-8,height=1.72
     */
    
    return 0;
}

结构体作为函数参数传递的是成员的值(值传递而不是引用传递),对于结构体指针而言可以通过”->”操作符进行访问。

枚举

枚举类型是比较简单的一种数据类型,事实上在C语言中枚举类型是作为整形常量进行处理的,通常称为“枚举常量”。

//
//  main.c
//  ConstructedType
//
//  Created by Kenshin Cui on 14-7-18.
//  Copyright (c) 2014年 Kenshin Cui. All rights reserved.
//

#include <stdio.h>

enum Season{ //默认情况下spring=0,summer=1,autumn=2,winter=3
    spring,
    summer,
    autumn,
    winter
};

int main(int argc, const char * argv[]) {
    enum Season season=summer; //枚举赋值,等价于season=1
    printf("summer=%d\n",season); //结果:summer=1
    
    for(season=spring;season<=winter;++season){
        printf("element value=%d\n",season);
    }
    /*结果:
     element value=0
     element value=1
     element value=2
     element value=3
     */
    return 0;
}

需要注意的是枚举成员默认值从0开始,如果给其中一个成员赋值,其它后面的成员将依次赋值,例如上面如果summer手动指定为8,则autumn=9,winter=10,而sprint还是0。

共用体

共用体又叫联合,因为它的关键字是union(貌似数据库操作经常使用这个关键字),它的使用不像枚举和结构体那么频繁,但是作为C语言中的一种数据类型我们也有必要弄清它的用法。从前面的分析我们知道结构体的总长度等于所有成员的和(当然此时还可能遇到对齐问题),但是和结构体不同的是共用体所有成员共用一块内存,顺序从低地址开始存放,一次只能使用其中一个成员,union最终大小由共用体中最大的成员决定,对某一成员赋值可能会覆盖另一个成员。

//
//  main.c
//  ConstructedType
//
//  Created by Kenshin Cui on 14-7-20.
//  Copyright (c) 2014年 Kenshin Cui. All rights reserved.
//

#include <stdio.h>

union Type{
    char a;
    short int b;
    int c;
};

int main(int argc, const char * argv[]) {
    union Type t;
    t.a='a';
    t.b=10;
    t.c=65796;
    
    printf("address(Type)=%x,address(t.a)=%x,address(t.b)=%x,address(t.c)=%x\n",&t,&t.a,&t.b,&t.c);
    //结果:address(Type)=5fbff7b8,address(t.a)=5fbff7b8,address(t.b)=5fbff7b8,address(t.c)=5fbff7b8
    
    printf("len(Type)=%d\n",sizeof(union Type));
    //结果:len(Type)=4
    
    printf("t.a=%d,t.b=%d,t.c=%d\n",t.a,t.b,t.c);
    //结果:t.a=4,t.b=260,t.c=65796
    
    return 0;
}

 

这里需要重点解释一个问题:为什么t.a、t.b、t.c输出结果分别是4、260、65796,当然t.c等于65796并不奇怪,但是t.a前面赋值为’a’不应该是97吗,而t.b不应该是10吗?其实如果弄清这个问题共用体的概念基本就清楚了。

根据前面提到的,共用体其实每次只能使用其中一个成员,对于上面的代码经过三次赋值最终使用的其实就是t.c,而通过上面的输出结果我们也确实看到c是有效的。共用体有一个特点就是它的成员存储在同一块内存区域,这块区域的大小需要根据它的成员中长度最大的成员长度而定。由于上面的代码是在64位编译器下编译的,具体长度:char=1,short int=2,int=4,所以得出结论,Type的长度为4,又根据上面输出的地址,可以得到下面的存储信息(注意数据的存储方式:高地址存储高位,低地址存储地位):

union

当读取c的时候,它的二进制是“00000000  00000001  00000001  00000100”,换算成十进制就是65796;而经过三次赋值后,此时b的存储就已经被c成员的低位数据覆盖,b的长度是二,所以从起始地址取两个字节得到的二进制数据此时是“00000001  00000100”(b原来的数据已经被c低2位数据覆盖,其实此时就是c的低2位数据),换算成十进制就是260;类似的a此时的数据就是c的低一位数据”00000100”,换算成十进制就是4。

目录
相关文章
|
7天前
|
安全 Android开发 iOS开发
探索安卓与iOS开发的差异:平台特性与用户体验的深度对比
在移动应用开发的广阔天地中,安卓和iOS两大平台各占半壁江山。本文旨在通过数据驱动的分析方法,深入探讨这两大操作系统在开发环境、用户界面设计及市场表现等方面的差异。引用最新的行业报告和科研数据,结合技术专家的观点,本文将提供对开发者和市场分析师均有价值的洞见。
|
10天前
|
Java 开发工具 Android开发
探索Android与iOS开发的差异:平台选择对项目成功的影响
在移动应用开发的广阔天地中,Android和iOS两大平台各自占据着半壁江山。本文将深入探讨这两个平台在开发过程中的关键差异点,包括编程语言、开发工具、用户界面设计、性能优化以及市场覆盖等方面。通过对这些关键因素的比较分析,旨在为开发者提供一个清晰的指南,帮助他们根据项目需求和目标受众做出明智的平台选择。
|
10天前
|
编解码 Android开发 iOS开发
深入探索Android与iOS开发的差异与挑战
【6月更文挑战第24天】在移动应用开发的广阔舞台上,Android和iOS两大操作系统扮演着主角。它们各自拥有独特的开发环境、工具集、用户基础及市场策略。本文将深度剖析这两个平台的开发差异,并探讨开发者面临的挑战,旨在为即将踏入或已在移动开发领域奋斗的开发者提供一份实用指南。
35 13
|
6天前
|
iOS开发 开发者 UED
探索iOS开发中的SwiftUI框架
【6月更文挑战第28天】在移动应用开发的海洋中,SwiftUI作为iOS平台的新星,以其声明式语法和灵活性,正引领着界面设计的未来。本文将带你深入理解SwiftUI的核心概念、布局能力以及如何通过它提升开发效率,为开发者们提供一份实操指南,解锁SwiftUI的强大潜力。
13 1
|
7天前
|
存储 移动开发 C语言
技术心得记录:嵌入式开发中常用到的C语言库函数
技术心得记录:嵌入式开发中常用到的C语言库函数
|
13天前
|
iOS开发 开发者 容器
探索iOS开发中的SwiftUI框架
【6月更文挑战第21天】本文深入探讨了苹果在iOS开发中推出的SwiftUI框架,旨在为开发者提供一种声明式、更简洁的界面设计方法。文章首先概述了SwiftUI的核心概念和优势,接着通过一个天气预报应用实例,详细讲解了如何使用SwiftUI进行布局和用户界面的设计。此外,还讨论了SwiftUI与UIKit的差异,以及如何将SwiftUI集成到现有的项目中。最后,文章展望了SwiftUI的未来发展方向,包括潜在的改进和新特性。
|
9天前
|
监控 Android开发 iOS开发
探索Android与iOS开发的差异:平台、工具和用户体验的比较
【6月更文挑战第25天】在移动应用开发的广阔天地中,Android和iOS两大平台各领风骚,它们在开发环境、工具选择及用户体验设计上展现出独特的风貌。本文将深入探讨这两个操作系统在技术实现、市场定位和用户交互方面的关键差异,旨在为开发者提供一个全景式的视图,帮助他们在面对项目决策时能够更加明智地选择适合自己项目需求的平台。
|
13天前
|
Java 开发工具 Android开发
安卓与iOS开发差异解析
【6月更文挑战第21天】本文旨在深入探讨安卓和iOS两大移动操作系统在应用开发过程中的主要差异。通过对比分析,揭示各自的设计哲学、编程语言选择、用户界面构建、性能优化策略以及发布流程的异同。文章将提供开发者视角下的实用信息,帮助他们更好地理解各自平台的特点和挑战,从而做出更明智的开发决策。
|
14天前
|
Java 开发工具 Android开发
探索安卓与iOS开发的核心差异
【6月更文挑战第20天】在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文将深入探讨这两大操作系统在开发过程中的主要区别,包括编程语言、开发工具、用户界面设计哲学、系统架构以及市场分布等方面。通过对这些关键差异的分析,旨在为开发者提供一份实用的指南,帮助他们在面对项目决策时,能够更加明智地选择合适的平台,并针对特定平台优化他们的应用。
|
14天前
|
开发工具 Android开发 iOS开发
探索安卓与iOS开发的差异:从工具到用户体验
【6月更文挑战第20天】在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文将深入探讨这两个操作系统在开发环境、编程语言、用户界面设计以及性能优化等方面的关键差异。我们将通过比较分析,揭示各自平台的独特优势和面临的挑战,为开发者提供决策参考,并为最终用户提供更深层次的用户体验洞察。