windows系统状态(磁盘大小、内存、进程、cpu使用率、网络连接)

简介:

分享一下自己做的一个获取windows系统状态的类(c++)

使用方式:声明一个该类的变量(即实例化),用实例调用相关接口即可。

头文件:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#ifndef WinSystemInfo_include
#define WinSystemInfo_include
#include <winsock2.h>
#include <ws2tcpip.h>
#include <Iphlpapi.h>
#include <windows.h>
#include <string>
#include <vector>
namespace  WINSERV_STATE
{
#pragma pack(push)
#pragma pack(8)
struct  sys_mem_info
{
     __int64      total;               //总内存数,单位M
     __int64      free ;                //可用内存数,单位M
};
struct  sys_net_info
{
     __int64      send;                //每秒发送流量
     __int64      recv;                //每秒接受流量
     __int64      total;               //每秒钟总流量
};
struct  DiskInfo
{
     std::string     name;                //盘符
     __int64          total;               //总数单位M
     __int64          free ;                //可用空间数单位M
};
struct  sys_process_info
{
     int              pid;             //进程ID
     std::string     name;            //进程名
     int              cpuUsage;        //进程cpu使用率
     double           memUsage;        //进程内存大小
};
struct  process_time_info
{
     int              pid;             //process id
     FILETIME        kernelTime;      //time spent in kernel mode
     FILETIME        userTime;        //time spent in user mode
     FILETIME        lastSysTime;     //上次时间
};
enum  connection_type{UNKNOWN=0,TCP,UDP,TCP6,UDP6};
/*
struct sys_conn_info
{
     int             id;
     connection_type type;
     union   connInfo{
#if (WINVER>=0x0600)
     MIB_TCP6ROW     tcp6Info;
     MIB_UDP6ROW     udp6Info;
#endif
     MIB_TCPROW      tcpInfo;
     MIB_UDPROW      udpInfo;
     }ipInfo;
};
*/
struct  SysNetConnInfo
{
   int                id;
   int                protocol;
   std::string       localAddr;
   int                localPort;
   std::string       remoteAddr;
   int                remotePort;
   int                state;
};
#pragma pack(pop)
DWORD  WINAPI CountCpuUsage( LPVOID  lpParameter);
class  WinSystemInfo
{
public :
     WinSystemInfo( void );
     ~WinSystemInfo( void );
     //获取可用百分比
     int                  getDiskAvailable();
     //获取磁盘总空间和空闲空间
     int                  getDrivesInfo(std::vector<DiskInfo>& drives, ULONGLONG & totalSpace,  ULONGLONG & totalFreeSpace);
     //get memory info
     void                 GetMemInfo(sys_mem_info& info);
     //connection info
     void                 GetConnInfo(std::vector<SysNetConnInfo>& conns);
     //return cpu usage 0~100
     double               GetCpuInfo();
     //net flow info
     sys_net_info        GetNetInfo();
     //process info
     void                 GetProcInfo(std::vector<sys_process_info>& procInfo);
private :
     friend  DWORD  WINAPI CountCpuUsage( LPVOID  lpParameter);
     //内部使用变量
     __int64              CompareFileTime( const  FILETIME& time1, const  FILETIME& time2);
     int                  Get_processor_number();
     CRITICAL_SECTION    m_cpu_critical;
     double               m_cpuUsage;      //
     sys_net_info        m_netInfo;       //net flow info
     std::vector<sys_process_info>     m_procInfo;
                                        
     WinSystemInfo( const  WinSystemInfo&);
     WinSystemInfo& operator= ( const  WinSystemInfo&);
     void                 initialize();
     ULONGLONG            m_totalDiskSpace;
     HANDLE               m_hCpuCountThread;
};
}
#endif

源文件:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#include <winsock2.h>
//#include <ws2tcpip.h>
#include <tlhelp32.h>
#include <stdlib.h>
//#include <stdio.h>
#define MALLOC(x) HeapAlloc(GetProcessHeap(), 0, (x))
#define FREE(x) HeapFree(GetProcessHeap(), 0, (x))
#include "WinSystemInfo.h"
//#include <iomanip>//for get cpu usage
#include "psapi.h"
#pragma comment(lib,"Iphlpapi.lib")
#pragma comment(lib,"ws2_32.lib")
//#pragma comment(lib,"Advapi32.lib")
#pragma comment(lib,"psapi.lib")
#include <direct.h>
namespace  WINSERV_STATE
{
DWORD  WINAPI CountCpuUsage( LPVOID  lpParameter)
{
     BOOL                         res;
     HANDLE                       hEvent;
     HANDLE                       hProcessSnap;
     PROCESSENTRY32              pe32;
     FILETIME                    exitTime;
     FILETIME                    creatTime;
     FILETIME                    procKernelTime;
     FILETIME                    procUserTime;
     FILETIME                    sysTime;
     bool                         newProc =  false ;
     std::vector<process_time_info>    procTimeInfo;
     WinSystemInfo* p = (WinSystemInfo*)lpParameter;
     //
     FILETIME preidleTime;
     FILETIME prekernelTime;
     FILETIME preuserTime;
     //
     FILETIME idleTime;
     FILETIME kernelTime;
     FILETIME userTime;
     //total cpu usage
     res = GetSystemTimes( &idleTime, &kernelTime, &userTime );
     if  (!res)
     {
         return  GetLastError();
     }
     preidleTime             = idleTime;
     prekernelTime           = kernelTime;
     preuserTime             = userTime ;
     hEvent                  = CreateEvent(NULL,FALSE,FALSE,NULL);
     MIB_IFTABLE *pIfTable   = (MIB_IFTABLE *) MALLOC( sizeof  (MIB_IFTABLE));
     //MIB_IFROW *pIfRow;
     static  __int64  net_send = 0;
     static  __int64  net_recv = 0;
     __int64  idle    ;
     __int64  kernel  ;
     __int64  user    ;
     DWORD  dwRet             = 0;
     DWORD  dwSize            =  sizeof  (MIB_IFTABLE);
     //获取初始网络流量数据        
     if  (GetIfTable(pIfTable, &dwSize, FALSE) == ERROR_INSUFFICIENT_BUFFER) {
         FREE(pIfTable);
         pIfTable            = (MIB_IFTABLE *) MALLOC(dwSize);
         if  (pIfTable == NULL) {
             return  GetLastError();
         }
     }
     dwRet = GetIfTable(pIfTable,&dwSize,FALSE);
     if  ( dwRet == NO_ERROR )
     {
         for  ( DWORD  i=0; i < pIfTable->dwNumEntries; i++ ){
             net_send        += ( __int64 )(pIfTable->table[i].dwOutOctets);
             net_recv        += ( __int64 )(pIfTable->table[i].dwInOctets);
         }
     }
     //process infos
     hProcessSnap = CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, 0 );
     if ( hProcessSnap == INVALID_HANDLE_VALUE )
         return  GetLastError();
     pe32.dwSize =  sizeof ( PROCESSENTRY32 );
     if ( !Process32First( hProcessSnap, &pe32 ))
     {
         CloseHandle( hProcessSnap );
         return  GetLastError();
     }
     GetSystemTimeAsFileTime(&sysTime);
     do {
         process_time_info   procTime;
         HANDLE   hP  = OpenProcess(PROCESS_ALL_ACCESS /*PROCESS_QUERY_INFORMATION | PROCESS_VM_READ*/ , FALSE, pe32.th32ProcessID );
         if ( hP == NULL )
             continue ;
                                        
         procTime.pid        = ( int )pe32.th32ProcessID;
         procTime.lastSysTime    = sysTime;
         GetProcessTimes(hP,&creatTime,&exitTime,&procTime.kernelTime,&procTime.userTime);
         procTimeInfo.push_back(procTime);
         CloseHandle(hP);
     while (Process32Next( hProcessSnap, &pe32));
     CloseHandle( hProcessSnap );
     int  processorCount      = p->Get_processor_number();
     while  (1)
     {
                                        
         if (WaitForSingleObject( hEvent,1000) == WAIT_FAILED )
             return  GetLastError();
         res = GetSystemTimes( &idleTime, &kernelTime, &userTime );
         if  (!res)
         {
             return  GetLastError();
         }
         idle        = p->CompareFileTime( preidleTime,idleTime);
         kernel      = p->CompareFileTime( prekernelTime, kernelTime);
         user        = p->CompareFileTime(preuserTime, userTime);
         double  cpu  = ((( double )(kernel + user - idle)/( double )(kernel+user))*100+0.5);
         if (( UINT )cpu != 0)
         {
             EnterCriticalSection(&p->m_cpu_critical);
             p->m_cpuUsage = cpu;
             LeaveCriticalSection(&p->m_cpu_critical);
         }
         preidleTime         = idleTime;
         prekernelTime       = kernelTime;
         preuserTime         = userTime ;
         //计算网络流量
         dwRet                       = GetIfTable(pIfTable,&dwSize,FALSE);
         if  ( dwRet == NO_ERROR )
         {
             __int64                  total_send  = 0;
             __int64                  total_recv  = 0;
             for  ( DWORD  i=0; i < pIfTable->dwNumEntries; i++ )
             {
                                                
                 total_send      += pIfTable->table[i].dwOutOctets;
                 total_recv      += pIfTable->table[i].dwInOctets;
                                                
             }
             EnterCriticalSection(&p->m_cpu_critical);
             p->m_netInfo.send        = total_send - net_send;
             p->m_netInfo.recv        = total_recv - net_recv;
             p->m_netInfo.total       = p->m_netInfo.send + p->m_netInfo.recv;
             LeaveCriticalSection(&p->m_cpu_critical);
             net_send            = total_send;
             net_recv            = total_recv;
         } //no error
         //更新进程信息;
         hProcessSnap = CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, 0 );
         if ( hProcessSnap == INVALID_HANDLE_VALUE )
             return  GetLastError();
                                        
         pe32.dwSize =  sizeof ( PROCESSENTRY32 );
         if ( !Process32First( hProcessSnap, &pe32 ) )
         {
             CloseHandle( hProcessSnap );     // Must clean up the snapshot object!
             return  GetLastError();
         }
         EnterCriticalSection(&p->m_cpu_critical);
         p->m_procInfo.clear();
         LeaveCriticalSection(&p->m_cpu_critical);
         do {
             HANDLE   hP  = OpenProcess(PROCESS_ALL_ACCESS /*PROCESS_QUERY_INFORMATION | PROCESS_VM_READ*/ , FALSE, pe32.th32ProcessID );
             if ( hP == NULL )
                 continue ;
             GetProcessTimes(hP,&creatTime,&exitTime,&procKernelTime,&procUserTime);
             GetSystemTimeAsFileTime(&sysTime);
             for ( int  i=0;i < procTimeInfo.size();i++)
             {
                 newProc =  true ;
                 if (procTimeInfo[i].pid == pe32.th32ProcessID)
                 {
                     //进程运行的总时间
                     __int64  k       = p->CompareFileTime( procTimeInfo[i].kernelTime, procKernelTime);
                     __int64  u       = p->CompareFileTime(procTimeInfo[i].userTime, procUserTime);
                     //已用系统时间
                     __int64  sysProc     = p->CompareFileTime(procTimeInfo[i].lastSysTime,sysTime);
                                                    
                     double  cpu          = ((( double )(k + u)*100)/sysProc/processorCount + 0.50001);
                     PROCESS_MEMORY_COUNTERS_EX pmc;
                     pmc.cb              =  sizeof (pmc);
                     GetProcessMemoryInfo(hP,(PROCESS_MEMORY_COUNTERS*)(&pmc), sizeof (pmc));
                     sys_process_info    tmp;
                     tmp.cpuUsage        = ( int )cpu;
                     tmp.memUsage        = pmc.PrivateUsage/1024;
                     tmp.name            = std::string(pe32.szExeFile);
                     tmp.pid             = ( int )pe32.th32ProcessID;
                                                    
                     EnterCriticalSection(&p->m_cpu_critical);
                     p->m_procInfo.push_back(tmp);
                     LeaveCriticalSection(&p->m_cpu_critical);
                     newProc =  false ;
                     procTimeInfo[i].kernelTime  = procKernelTime;
                     procTimeInfo[i].userTime    = procUserTime;
                     procTimeInfo[i].lastSysTime = sysTime;
                     break ;
                 }
             }
             if (newProc)
             {   
                 process_time_info   procTime;
                 HANDLE   hP2         = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pe32.th32ProcessID );
                 if ( hP == NULL )
                     break ;
                                                
                 procTime.pid        = ( int )pe32.th32ProcessID;
                 procTime.lastSysTime    = sysTime;
                 procTime.kernelTime     = procKernelTime;
                 procTime.userTime       = procUserTime;
                 CloseHandle(hP2);
             }
             CloseHandle(hP);
         while (Process32Next( hProcessSnap, &pe32));
         CloseHandle( hProcessSnap );
     } //while
     if  (pIfTable != NULL) {
         FREE(pIfTable);
         pIfTable = NULL;
     }
     EnterCriticalSection(&p->m_cpu_critical);
     if (p->m_cpuUsage > 100)
     {
         p->m_cpuUsage = 100;
     }
     if (p->m_cpuUsage < 0)
     {
         p->m_cpuUsage = 1;
     }
     LeaveCriticalSection(&p->m_cpu_critical);
     return  DWORD (p->m_cpuUsage);
}
WinSystemInfo::WinSystemInfo( void )
{
     InitializeCriticalSection(&m_cpu_critical);
     m_hCpuCountThread   = NULL;
     m_cpuUsage          = 1;
                                    
     m_totalDiskSpace    = 0;
     initialize();
}
WinSystemInfo::~WinSystemInfo( void )
{
     DeleteCriticalSection(&m_cpu_critical);
     if (m_hCpuCountThread != NULL)
         CloseHandle(m_hCpuCountThread);
}
void  WinSystemInfo::initialize()
{
     if (m_hCpuCountThread == NULL)
     {
         SECURITY_ATTRIBUTES sa;
         sa.bInheritHandle   =  true ;
         sa.nLength          =  sizeof (SECURITY_ATTRIBUTES);
         sa.lpSecurityDescriptor = NULL;
         m_hCpuCountThread = CreateThread(&sa,0,CountCpuUsage, this ,0,NULL);
     }
}
int  WinSystemInfo::getDrivesInfo(std::vector<DiskInfo>& drives, ULONGLONG & totalSpace,  ULONGLONG & totalFreeSpace)
{
     char  name;
     BOOL  b_flag                 = FALSE;
     ULARGE_INTEGER FreeAvailable,TotalNum,TotalFreeNum;
     totalSpace                  = 0;
     totalFreeSpace              = 0;
     ULONGLONG  totalSpaceTmp     = 0;
     ULONGLONG  totalFreeSpaceTmp = 0;
     for ( name =  'A' ;name <=  'Z' ;name++ )
     {
         char  diskname[16]       = {0};
         sprintf (diskname, "%c:" ,name);
                                        
         b_flag              = GetDiskFreeSpaceEx(diskname ,&FreeAvailable,&TotalNum,&TotalFreeNum );
         if ( b_flag )
         {
             if (m_totalDiskSpace == 0)
             {
                 totalSpaceTmp   = ( int )(TotalNum.QuadPart/(1024*1024));
                 totalSpace      += totalSpaceTmp;
             }
             totalFreeSpaceTmp = ( int )(FreeAvailable.QuadPart/(1024*1024));
             totalFreeSpace  += totalFreeSpaceTmp;
             b_flag          =  false ;
             DiskInfo        disk;
             disk.name       = std::string(diskname);;
             disk.total      = totalSpaceTmp;
             disk. free        = totalFreeSpaceTmp;
             drives.push_back(disk);
         }
     }
     if (m_totalDiskSpace == 0)
         m_totalDiskSpace = totalSpace;
     totalSpace = m_totalDiskSpace;
     return  drives.size();
}
int  WinSystemInfo::getDiskAvailable()
{
     std::vector<DiskInfo> tmp;
     ULONGLONG  totalSpace,totalFreeSpace;
     getDrivesInfo(tmp,totalSpace,totalFreeSpace);
     return  ( int )((totalSpace - totalFreeSpace)*100/totalSpace);
}
void  WinSystemInfo::GetMemInfo(sys_mem_info& info)
{
     //mem status info
     MEMORYSTATUSEX                  mymem;
     mymem.dwLength                  =  sizeof (MEMORYSTATUSEX);
     GlobalMemoryStatusEx(&mymem);
     memset (&info,0, sizeof (info));
     info.total                      = (mymem.ullTotalPhys)/1024/1024;
     info. free                        = (mymem.ullAvailPhys)/1024/1024;
}
__int64  WinSystemInfo::CompareFileTime ( const  FILETIME& time1, const  FILETIME& time2 )
{
     __int64  a = time1.dwHighDateTime << 16 << 16;
             a |= time1.dwLowDateTime ;
     __int64  b = time2.dwHighDateTime << 16 << 16;
             b |= time2.dwLowDateTime ;
     return    (b - a);
}
double  WinSystemInfo::GetCpuInfo()
{
     double  tmp;
     EnterCriticalSection(&m_cpu_critical);
     tmp = m_cpuUsage;
     LeaveCriticalSection(&m_cpu_critical);
     return  tmp;
}
sys_net_info WinSystemInfo::GetNetInfo()
{
     sys_net_info netInfo;
     EnterCriticalSection(&m_cpu_critical);
     netInfo.recv    = m_netInfo.recv;
     netInfo.send    = m_netInfo.send;
     netInfo.total   = m_netInfo.total;
     LeaveCriticalSection(&m_cpu_critical);
     return  netInfo;
}
void  WinSystemInfo::GetConnInfo(std::vector<SysNetConnInfo>& conns)
{
     MIB_TCPTABLE*   ptTables = NULL;
     MIB_UDPTABLE*   puTables = NULL;
     DWORD            retVal  = 0;
#if WINVER >= 0x0600 //0x0600是vista的版本号
     MIB_TCP6TABLE*  pt6Tables = NULL;
     MIB_UDP6TABLE*  pu6Tables = NULL;
#endif
     DWORD            size = 0;
     int              id = 0;
     if (ERROR_INSUFFICIENT_BUFFER == (retVal = GetExtendedTcpTable(ptTables,&size,FALSE,AF_INET,TCP_TABLE_BASIC_ALL,NULL)))
     {
         if (ptTables != NULL)
         {
             delete  ptTables;
             ptTables = 0;
         }
         ptTables =  new  MIB_TCPTABLE[size];
         if (ptTables != NULL)
             if (NO_ERROR !=(retVal =GetExtendedTcpTable(ptTables,&size,FALSE,AF_INET,TCP_TABLE_BASIC_ALL,NULL)))
                 return ;
     }
     //get tcp connections
     if (retVal == NO_ERROR){
         for ( DWORD  i =0; i < ptTables->dwNumEntries; i++)
         {
             SysNetConnInfo  tmp;
             in_addr n1,n2;
             n1.S_un.S_addr = (u_long)ptTables->table[i].dwLocalAddr;
             n2.S_un.S_addr = (u_long)ptTables->table[i].dwRemoteAddr;
             tmp.id                              =  int (id++);
             tmp.localAddr                       = std::string(inet_ntoa(n1));
             tmp.localPort                       = ptTables->table[i].dwLocalPort;
             tmp.remoteAddr                      = std::string(inet_ntoa(n2));
             tmp.remotePort                      = ptTables->table[i].dwRemotePort;
             tmp.protocol                        = TCP;
             tmp.state                           = ptTables->table[i].State;
             /*
             tmp.ipInfo.tcpInfo.dwState          = -1;
             tmp.id                              = int(id++);
             tmp.type                            = TCP;
             tmp.ipInfo.tcpInfo.State            = ptTables->table[i].State;
             tmp.ipInfo.tcpInfo.dwLocalAddr      = ptTables->table[i].dwLocalAddr;
             tmp.ipInfo.tcpInfo.dwLocalPort      = ptTables->table[i].dwLocalPort;
             tmp.ipInfo.tcpInfo.dwRemoteAddr     = ptTables->table[i].dwRemoteAddr;
             tmp.ipInfo.tcpInfo.dwRemotePort     = ptTables->table[i].dwRemotePort;
             tmp.ipInfo.tcpInfo.dwState          = ptTables->table[i].dwState;
             */
             conns.push_back(tmp);
         }
         if (ptTables != NULL)
         {
             delete  ptTables;
             ptTables = NULL;
         }
     }
     size = 0;
     //get udp connections
     if (ERROR_INSUFFICIENT_BUFFER == (retVal =GetExtendedUdpTable(puTables,&size,FALSE,AF_INET,UDP_TABLE_BASIC,NULL)))
     {
         if (puTables != NULL)
         {
             delete  puTables;
             puTables = 0;
         }
         puTables =  new  MIB_UDPTABLE[size];
         if (puTables != NULL)
             if (NO_ERROR != (retVal =GetExtendedUdpTable(puTables,&size,FALSE,AF_INET,UDP_TABLE_BASIC,NULL)))
                 return ;
     }
     if (retVal == NO_ERROR){
         for ( DWORD  i =0; i < puTables->dwNumEntries; i++)
         {
             SysNetConnInfo  tmp;
             in_addr n1;
             n1.S_un.S_addr = (u_long)puTables->table[i].dwLocalAddr;
             tmp.id                              =  int (id++);
             tmp.localAddr                       = std::string(inet_ntoa(n1));
             tmp.localPort                       = puTables->table[i].dwLocalPort;
             tmp.remoteAddr                      =  "" ;
             tmp.remotePort                      = 0;
             tmp.protocol                        = UDP;
             tmp.state                           = 0;
             /*
             tmp.id                              = int(id++);
             tmp.type                            = UDP;
             tmp.ipInfo.udpInfo.dwLocalAddr      = puTables->table[i].dwLocalAddr;
             tmp.ipInfo.udpInfo.dwLocalPort      = puTables->table[i].dwLocalPort;
             */
             conns.push_back(tmp);
         }
         if (puTables != NULL)
         {
             delete  puTables;
             puTables = NULL;
         }
     }
     size = 0;
#if WINVER >= 0x0600 //0x0600是vista的版本号
     if (ERROR_INSUFFICIENT_BUFFER == (retVal = GetExtendedTcpTable(pt6Tables,&size,FALSE,AF_INET6,TCP_TABLE_BASIC_ALL,NULL)))
     {
         if (pt6Tables != NULL)
         {
             delete  pt6Tables;
             pt6Tables = 0;
         }
         pt6Tables =  new  MIB_TCP6TABLE[size];
         if (pt6Tables != NULL)
             if (NO_ERROR != (retVal =GetExtendedTcpTable(pt6Tables,&size,FALSE,AF_INET6,TCP_TABLE_BASIC_ALL,NULL)))
                 return ;
     }
     //get tcp6 connections
     if (retVal == NO_ERROR)
     {
         for ( DWORD  i =0; i < pt6Tables->dwNumEntries; i++)
         {
             SysNetConnInfo  tmp;
             char  in1[64] = { '\0' };
             char  in2[64] = { '\0' };
             sprintf (in1, "%4x:%4x:%4x:%4x:%4x:%4x:%4x:%4x" ,
                 pt6Tables->table[i].LocalAddr.u.Word[0],
                 pt6Tables->table[i].LocalAddr.u.Word[1],
                 pt6Tables->table[i].LocalAddr.u.Word[2],
                 pt6Tables->table[i].LocalAddr.u.Word[3],
                 pt6Tables->table[i].LocalAddr.u.Word[4],
                 pt6Tables->table[i].LocalAddr.u.Word[5],
                 pt6Tables->table[i].LocalAddr.u.Word[6],
                 pt6Tables->table[i].LocalAddr.u.Word[7]
                 );
             sprintf (in2, "%4x:%4x:%4x:%4x:%4x:%4x:%4x:%4x" ,
             pt6Tables->table[i].RemoteAddr.u.Word[0],
             pt6Tables->table[i].RemoteAddr.u.Word[1],
             pt6Tables->table[i].RemoteAddr.u.Word[2],
             pt6Tables->table[i].RemoteAddr.u.Word[3],
             pt6Tables->table[i].RemoteAddr.u.Word[4],
             pt6Tables->table[i].RemoteAddr.u.Word[5],
             pt6Tables->table[i].RemoteAddr.u.Word[6],
             pt6Tables->table[i].RemoteAddr.u.Word[7]
             );
             //InetNtop(AF_INET6,&(pt6Tables->table[i].LocalAddr),in1,64);
             //InetNtop(AF_INET6,&(pt6Tables->table[i].RemoteAddr),in2,64);
             tmp.id                              =  int (id++);
             tmp.localAddr                       = std::string(in1);
             tmp.localPort                       = pt6Tables->table[i].dwLocalPort;
             tmp.remoteAddr                      = std::string(in2);
             tmp.remotePort                      = pt6Tables->table[i].dwRemotePort;
             tmp.protocol                        = TCP6;
             tmp.state                           = pt6Tables->table[i].State;
             /*
             //tmp.ipInfo.tcp6Info.dwState           = -1;
             tmp.id                              = int(id++);
             tmp.type                            = TCP6;
             tmp.ipInfo.tcp6Info.State           = pt6Tables->table[i].State;
             tmp.ipInfo.tcp6Info.LocalAddr       = pt6Tables->table[i].LocalAddr;
             tmp.ipInfo.tcp6Info.dwLocalScopeId  = pt6Tables->table[i].dwLocalScopeId;
             tmp.ipInfo.tcp6Info.dwLocalPort     = pt6Tables->table[i].dwLocalPort;
             tmp.ipInfo.tcp6Info.RemoteAddr      = pt6Tables->table[i].RemoteAddr;
             tmp.ipInfo.tcp6Info.dwRemoteScopeId = pt6Tables->table[i].dwRemoteScopeId;
             tmp.ipInfo.tcp6Info.dwRemotePort    = pt6Tables->table[i].dwRemotePort;
             //tmp.ipInfo.tcp6Info.dwState           = pt6Tables->table[i].dwState;
             */
             conns.push_back(tmp);
         }
         if (pu6Tables != NULL)
         {
             delete  pt6Tables;
             pt6Tables = NULL;
         }
     }
     size = 0;
     //get udp6 connections
     if (ERROR_INSUFFICIENT_BUFFER == (retVal =GetExtendedUdpTable(pu6Tables,&size,FALSE,AF_INET6,UDP_TABLE_BASIC,NULL)))
     {
         if (pu6Tables != NULL)
         {
             delete  pu6Tables;
             pu6Tables = 0;
         }
         pu6Tables =  new  MIB_UDP6TABLE[size];
         if (pu6Tables != NULL)
             if (NO_ERROR != (retVal =GetExtendedUdpTable(pu6Tables,&size,FALSE,AF_INET6,UDP_TABLE_BASIC,NULL)))
                 return ;
     }
     if (retVal == NO_ERROR){
         for ( DWORD  i =0; i < pu6Tables->dwNumEntries; i++)
         {
             SysNetConnInfo  tmp;
             char  in1[64] = { '\0' };
             sprintf (in1, "%4x:%4x:%4x:%4x:%4x:%4x:%4x:%4x" ,
                 pu6Tables->table[i].dwLocalAddr.u.Word[0],
                 pu6Tables->table[i].dwLocalAddr.u.Word[1],
                 pu6Tables->table[i].dwLocalAddr.u.Word[2],
                 pu6Tables->table[i].dwLocalAddr.u.Word[3],
                 pu6Tables->table[i].dwLocalAddr.u.Word[4],
                 pu6Tables->table[i].dwLocalAddr.u.Word[5],
                 pu6Tables->table[i].dwLocalAddr.u.Word[6],
                 pu6Tables->table[i].dwLocalAddr.u.Word[7]
                 );
             //InetNtop(AF_INET6,&(pt6Tables->table[i].LocalAddr),in1,64);
                                            
             tmp.id                              =  int (id++);
             tmp.localAddr                       = std::string(in1);
             tmp.localPort                       = pu6Tables->table[i].dwLocalPort;
             tmp.remoteAddr                      =  "" ;
             tmp.remotePort                      = 0;
             tmp.protocol                        = UDP6;
             tmp.state                           = 0;
             /*
             sys_conn_info   tmp;
             tmp.id                              = int(id++);
             tmp.type                            = UDP6;
             tmp.ipInfo.udp6Info.dwLocalAddr     = pu6Tables->table[i].dwLocalAddr;
             tmp.ipInfo.udp6Info.dwLocalPort     = pu6Tables->table[i].dwLocalPort;
             tmp.ipInfo.udp6Info.dwLocalScopeId  = pu6Tables->table[i].dwLocalScopeId;
             */
             conns.push_back(tmp);
         }
         if (pu6Tables != NULL)
         {
             delete  pu6Tables;
             pu6Tables = 0;
         }
     }
#endif
}
void  WinSystemInfo::GetProcInfo(std::vector<sys_process_info>& procInfo)
{
     EnterCriticalSection(&m_cpu_critical);
     procInfo    = m_procInfo;
     LeaveCriticalSection(&m_cpu_critical);
}
int  WinSystemInfo::Get_processor_number()
{
     SYSTEM_INFO info;
     GetSystemInfo(&info);
     return  ( int )info.dwNumberOfProcessors;
}
}









本文转自 hakuyo 51CTO博客,原文链接:http://blog.51cto.com/hakuyo/1218147,如需转载请自行联系原作者

目录
相关文章
|
13天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
13天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
21天前
|
C语言 开发者 内存技术
探索操作系统核心:从进程管理到内存分配
本文将深入探讨操作系统的两大核心功能——进程管理和内存分配。通过直观的代码示例,我们将了解如何在操作系统中实现这些基本功能,以及它们如何影响系统性能和稳定性。文章旨在为读者提供一个清晰的操作系统内部工作机制视角,同时强调理解和掌握这些概念对于任何软件开发人员的重要性。
|
20天前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存优化
本文旨在为读者提供一次深入浅出的操作系统之旅,从进程管理的基本概念出发,逐步探索到内存管理的高级技巧。我们将通过实际代码示例,揭示操作系统如何高效地调度和优化资源,确保系统稳定运行。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇了解操作系统深层工作原理的大门。
|
24天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
63 7
|
28天前
|
人工智能 缓存 并行计算
【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,解释了算力计算方法、数据加载与计算的平衡点,以及如何通过算力敏感度分析优化性能瓶颈。同时,文章还讨论了服务器、GPU和超级计算机等不同计算平台的性能发展趋势,强调了优化数据传输速率和加载策略的重要性。
54 4
|
28天前
|
存储 人工智能 编译器
【AI系统】CPU 指令集架构
本文介绍了指令集架构(ISA)的基本概念,探讨了CISC与RISC两种主要的指令集架构设计思路,分析了它们的优缺点及应用场景。文章还简述了ISA的历史发展,包括x86、ARM、MIPS、Alpha和RISC-V等常见架构的特点。最后,文章讨论了CPU的并行处理架构,如SISD、SIMD、MISD、MIMD和SIMT,并概述了这些架构在服务器、PC及嵌入式领域的应用情况。
65 4
|
28天前
|
存储 人工智能 vr&ar
【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心组件,负责执行指令和数据计算,协调计算机各部件运作。自1946年ENIAC问世以来,CPU经历了从弱小到强大的发展历程。本文将介绍CPU的基本概念、发展历史及内部结构,探讨世界首个CPU的诞生、冯·诺依曼架构的影响,以及现代CPU的组成与工作原理。从4004到酷睿i系列,Intel与AMD的竞争推动了CPU技术的飞速进步。CPU由算术逻辑单元、存储单元和控制单元三大部分组成,各司其职,共同完成指令的取指、解码、执行和写回过程。
45 3
|
1月前
|
算法 调度 开发者
深入理解操作系统:从进程管理到内存分配
本文旨在为读者提供一个深入浅出的操作系统知识之旅,从进程管理的基础概念出发,探索内存分配的策略与技巧。我们将通过实际代码示例,揭示操作系统背后的逻辑与奥秘,帮助读者构建起对操作系统工作原理的直观理解。文章不仅涵盖理论知识,还提供实践操作的指导,使读者能够将抽象的概念转化为具体的技能。无论你是初学者还是有一定基础的开发者,都能在这篇文章中找到有价值的信息和启发。
|
1月前
|
算法 调度 C++
深入理解操作系统:从进程管理到内存分配
【10月更文挑战第42天】本文将带你进入操作系统的神秘世界,探索其核心概念和关键技术。我们将从进程管理开始,了解操作系统如何协调和管理多个程序的运行;然后,我们将深入研究内存分配,看看操作系统如何有效地分配和管理计算机的内存资源。通过这篇文章,你将获得对操作系统工作原理的深入理解,并学会如何编写高效的代码来利用这些原理。