java位运算应用

简介:
位移动运算符:


<<表示左移, 左移一位表示原来的值乘2.


例如:3 <<2(3为int型) 
1)把3转换为二进制数字0000 0000 0000 0000 0000 0000 0000 0011, 
2)把该数字高位(左侧)的两个零移出,其他的数字都朝左平移2位, 
3)在低位(右侧)的两个空位补零。则得到的最终结果是0000 0000 0000 0000 0000 0000 0000 1100, 
转换为十进制是12。


同理,>>表示右移. 右移一位表示除2.


 


位运算:


位运算符包括: 与(&)、非(~)、或(|)、异或(^)


  &:当两边操作数的位同时为1时,结果为1,否则为0。如1100&1010=1000   


      | :当两边操作数的位有一边为1时,结果为1,否则为0。如1100|1010=1110   


      ~:0变1,1变0   


      ^:两边的位不同时,结果为1,否则为0.如1100^1010=0110


位运算与位移动运行符的一个场景:


    HashMap的功能是通过“键(key)”能够快速的找到“值”。下面我们分析下HashMap存数据的基本流程: 
    1、 当调用put(key,value)时,首先获取key的hashcode,int hash = key.hashCode(); 
    2、 再把hash通过一下运算得到一个int h. 
hash ^= (hash >>> 20) ^ (hash >>> 12); 
int h = hash ^ (hash >>> 7) ^ (hash >>> 4); 
为什么要经过这样的运算呢?这就是HashMap的高明之处。先看个例子,一个十进制数32768(二进制1000 0000 0000 0000),经过上述公式运算之后的结果是35080(二进制1000 1001 0000 1000)。看出来了吗?或许这样还看不出什么,再举个数字61440(二进制1111 0000 0000 0000),运算结果是65263(二进制1111 1110 1110 1111),现在应该很明显了,它的目的是让“1”变的均匀一点,散列的本意就是要尽量均匀分布。


  3、 得到h之后,把h与HashMap的承载量(HashMap的默认承载量length是16,可以自动变长。在构造HashMap的时候也可以指定一个长 度。这个承载量就是上图所描述的数组的长度。)进行逻辑与运算,即 h & (length-1),这样得到的结果就是一个比length小的正数,我们把这个值叫做index。其实这个index就是索引将要插入的值在数组中的 位置。第2步那个算法的意义就是希望能够得出均匀的index,这是HashTable的改进,HashTable中的算法只是把key的 hashcode与length相除取余,即hash % length,这样有可能会造成index分布不均匀。还有一点需要说明,HashMap的键可以为null,它的值是放在数组的第一个位置。


4、 我们用table[index]表示已经找到的元素需要存储的位置。先判断该位置上有没有元素(这个元素是HashMap内部定义的一个类Entity, 基本结构它包含三个类,key,value和指向下一个Entity的next),没有的话就创建一个Entity<K,V>对象,在 table[index]位置上插入,这样插入结束;如果有的话,通过链表的遍历方式去逐个遍历,看看有没有已经存在的key,有的话用新的value替 换老的value;如果没有,则在table[index]插入该Entity,把原来在table[index]位置上的Entity赋值给新的 Entity的next,这样插入结束。


下面讲解一下原码->反码->补码之间的相互关系


[-3]反=[10000011]反=11111100 
             原码            反码
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。 
[-3]补=[10000011]补=11111101 
             原码          补码


也就是说原码转换成补码是先原码  反码 最后+1成补码。位运算都是补码运算的,所以位运算后要再取反+1才得到真正的原码。


应用举例 
(1) 判断int型变量a是奇数还是偶数            
a&1  = 0 偶数 
      a&1 =  1 奇数 
(2) 取int型变量a的第k位 (k=0,1,2……sizeof(int)),即a>>k&1 
(3) 将int型变量a的第k位清0,即a=a&~(1 < <k) 
(4) 将int型变量a的第k位置1, 即a=a ¦(1 < <k) 
(5) int型变量循环左移k次,即a=a < <k ¦a>>16-k  (设sizeof(int)=16) 
(6) int型变量a循环右移k次,即a=a>>k ¦a < <16-k  (设sizeof(int)=16) 
(7)整数的平均值 
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法: 
int average(int x, int y)  //返回X,Y 的平均值 
{    
    return (x&y)+((x^y)>>1); 

(8)判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂 
boolean power2(int x) 

    return ((x&(x-1))==0)&&(x!=0); 

(9)不用temp交换两个整数 
void swap(int x , int y) 

    x ^= y; 
    y ^= x; 
    x ^= y; 

(10)计算绝对值 
int abs( int x ) 

int y ; 
y = x >> 31 ; 
return (x^y)-y ;        //or: (x+y)^y 

(11)取模运算转化成位运算 (在不产生溢出的情况下) 
        a % (2^n) 等价于 a & (2^n - 1) 
(12)乘法运算转化成位运算 (在不产生溢出的情况下) 
        a * (2^n) 等价于 a < < n 
(13)除法运算转化成位运算 (在不产生溢出的情况下) 
        a / (2^n) 等价于 a>> n 
        例: 12/8 == 12>>3 
(14) a % 2 等价于 a & 1        
(15) if (x == a) x= b; 
            else x= a; 
        等价于 x= a ^ b ^ x; 
(16) x 的 相反数 表示为 (~x+1)




实例


    功能              ¦          示例            ¦    位运算 
----------------------+---------------------------+-------------------- 
去掉最后一位          ¦ (101101->10110)          ¦ x >> 1 
在最后加一个0        ¦ (101101->1011010)        ¦ x < < 1 
在最后加一个1        ¦ (101101->1011011)        ¦ x < < 1+1 
把最后一位变成1      ¦ (101100->101101)          ¦ x ¦ 1 
把最后一位变成0      ¦ (101101->101100)          ¦ x ¦ 1-1 
最后一位取反          ¦ (101101->101100)          ¦ x ^ 1 
把右数第k位变成1      ¦ (101001->101101,k=3)      ¦ x ¦ (1 < < (k-1)) 
把右数第k位变成0      ¦ (101101->101001,k=3)      ¦ x & ~ (1 < < (k-1)) 
右数第k位取反        ¦ (101001->101101,k=3)      ¦ x ^ (1 < < (k-1)) 
取末三位              ¦ (1101101->101)            ¦ x & 7 
取末k位              ¦ (1101101->1101,k=5)      ¦ x & ((1 < < k)-1)
取右数第k位          ¦ (1101101->1,k=4)          ¦ x >> (k-1) & 1


把末k位变成1          ¦ (101001->101111,k=4)      ¦ x ¦ (1 < < k-1) 
末k位取反            ¦ (101001->100110,k=4)      ¦ x ^ (1 < < k-1) 
把右边连续的1变成0    ¦ (100101111->100100000)    ¦ x & (x+1) 
把右起第一个0变成1    ¦ (100101111->100111111)    ¦ x ¦ (x+1) 
把右边连续的0变成1    ¦ (11011000->11011111)      ¦ x ¦ (x-1) 
取右边连续的1        ¦ (100101111->1111)        ¦ (x ^ (x+1)) >> 1 
去掉右起第一个1的左边 ¦ (100101000->1000)        ¦ x & (x ^ (x-1)) 
判断奇数      (x&1)==1 
判断偶数 (x&1)==0       


例如求从x位(高)到y位(低)间共有多少个1


public static int FindChessNum(int x, int y, ushort k) 
        { 
            int re = 0; 
            for (int i = y; i <= x; i++) 
            { 
                re += ((k >> (i - 1)) & 1); 
            } 
            return re; 
        }
目录
相关文章
|
21天前
|
移动开发 Java Android开发
构建高效Android应用:探究Kotlin与Java的性能差异
【4月更文挑战第3天】在移动开发领域,性能优化一直是开发者关注的焦点。随着Kotlin的兴起,其在Android开发中的地位逐渐上升,但关于其与Java在性能方面的对比,尚无明确共识。本文通过深入分析并结合实际测试数据,探讨了Kotlin与Java在Android平台上的性能表现,揭示了在不同场景下两者的差异及其对应用性能的潜在影响,为开发者在选择编程语言时提供参考依据。
|
22天前
|
缓存 算法 Java
Java内存管理与调优:释放应用潜能的关键
【4月更文挑战第2天】Java内存管理关乎性能与稳定性。理解JVM内存结构,如堆和栈,是优化基础。内存泄漏是常见问题,需谨慎管理对象生命周期,并使用工具如VisualVM检测。有效字符串处理、选择合适数据结构和算法能提升效率。垃圾回收自动回收内存,但策略调整影响性能,如选择不同类型的垃圾回收器。其他优化包括调整堆大小、使用对象池和缓存。掌握这些技巧,开发者能优化应用,提升系统性能。
|
21天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【4月更文挑战第3天】 在Java并发编程中,线程池是一种重要的资源管理工具,它能有效地控制和管理线程的数量,提高系统性能。本文将深入探讨Java线程池的工作原理、应用场景以及优化策略,帮助读者更好地理解和应用线程池。
|
28天前
|
Java 编译器 Android开发
构建高效Android应用:探究Kotlin与Java的性能差异
在开发高性能的Android应用时,选择合适的编程语言至关重要。近年来,Kotlin因其简洁性和功能性受到开发者的青睐,但其性能是否与传统的Java相比有所不足?本文通过对比分析Kotlin与Java在Android平台上的运行效率,揭示二者在编译速度、运行时性能及资源消耗方面的具体差异,并探讨在实际项目中如何做出最佳选择。
17 4
|
29天前
|
数据采集 分布式计算 大数据
Java语言在大数据处理中的应用
传统的大数据处理往往依赖于庞大的数据中心和高性能的服务器,然而随着大数据时代的到来,Java作为一种强大的编程语言正在被广泛应用于大数据处理领域。本文将探讨Java语言在大数据处理中的优势和应用,以及其在分布式计算、数据处理和系统集成等方面的重要作用。
|
1天前
|
安全 Java 调度
Java线程:深入理解与实战应用
Java线程:深入理解与实战应用
12 0
|
1天前
|
Java
Java中的并发编程:理解和应用线程池
【4月更文挑战第23天】在现代的Java应用程序中,性能和资源的有效利用已经成为了一个重要的考量因素。并发编程是提高应用程序性能的关键手段之一,而线程池则是实现高效并发的重要工具。本文将深入探讨Java中的线程池,包括其基本原理、优势、以及如何在实际开发中有效地使用线程池。我们将通过实例和代码片段,帮助读者理解线程池的概念,并学习如何在Java应用中合理地使用线程池。
|
6天前
|
Java 关系型数据库 MySQL
一套java+ spring boot与vue+ mysql技术开发的UWB高精度工厂人员定位全套系统源码有应用案例
UWB (ULTRA WIDE BAND, UWB) 技术是一种无线载波通讯技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。一套UWB精确定位系统,最高定位精度可达10cm,具有高精度,高动态,高容量,低功耗的应用。
一套java+ spring boot与vue+ mysql技术开发的UWB高精度工厂人员定位全套系统源码有应用案例
|
6天前
|
设计模式 算法 Java
Java中的设计模式及其应用
【4月更文挑战第18天】本文介绍了Java设计模式的重要性及分类,包括创建型、结构型和行为型模式。创建型模式如单例、工厂方法用于对象创建;结构型模式如适配器、组合关注对象组合;行为型模式如策略、观察者关注对象交互。文中还举例说明了单例模式在配置管理器中的应用,工厂方法在图形编辑器中的使用,以及策略模式在电商折扣计算中的实践。设计模式能提升代码可读性、可维护性和可扩展性,是Java开发者的必备知识。
|
6天前
|
安全 Java API
函数式编程在Java中的应用
【4月更文挑战第18天】本文介绍了函数式编程的核心概念,包括不可变性、纯函数、高阶函数和函数组合,并展示了Java 8如何通过Lambda表达式、Stream API、Optional类和函数式接口支持函数式编程。通过实际应用案例,阐述了函数式编程在集合处理、并发编程和错误处理中的应用。结论指出,函数式编程能提升Java代码的质量和可维护性,随着Java语言的演进,函数式特性将更加丰富。