RSA算法介绍

简介:

2.1.1     算法实现

首先, 找出三个数, p, q, r,其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数。p, q, r 这三个数便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)

这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了

再来, 计算 n = pq

m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n

如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),

则每一位数均小于n, 然后分段编码

接下来, 计算 b == a^m mod n, (0 <= b < n),

b 就是编码后的资料

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq)

2.1.2     算法证明

<定理>

若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),

a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,

则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:

m 是任一质数, n 是任一整数, 则 n^m == n mod m

(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)

运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........

<证明>

因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数

因为在 modulo 中是 preserve 乘法的

(x == y mod z and u == v mod z => xu == yv mod z),

所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq


1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,

则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p

a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q

所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1

即 a^(k(p-1)(q-1)) == 1 mod pq

=> c == a^(k(p-1)(q-1)+1) == a mod pq


2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,

则 a^(q-1) == 1 mod q (费马小定理)

=> a^(k(p-1)(q-1)) == 1 mod q

=> c == a^(k(p-1)(q-1)+1) == a mod q

=> q | c - a

因 p | a

=> c == a^(k(p-1)(q-1)+1) == 0 mod p

=> p | c - a

所以, pq | c - a => c == a mod pq


3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上


4. 如果 a 同时是 p 和 q 的倍数时,

则 pq | a

=> c == a^(k(p-1)(q-1)+1) == 0 mod pq

=> pq | c - a

=> c == a mod pq

Q.E.D.


这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)....

但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,

所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能

2.1.3     RSA的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。


2.1.4     RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

 

2.1.5     RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。


2.1.6     RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则


( C1^(-1) )^(-r) * C2^s = P mod n


另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。


RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

 

2.1.7     RSA的缺点

Ø  产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

Ø  分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

Ø  RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。

特别说明:尊重作者的劳动成果,转载请注明出处哦~~~http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt279
相关文章
|
2月前
|
算法 安全 网络安全
非对称加密算法RSA
RSA是一种基于数论的非对称加密算法,依赖大整数质因数分解的困难性保证安全性。它生成公钥和私钥,公钥加密,私钥解密,适用于数据加密、数字签名和互联网安全等领域。尽管计算效率低、适合小量数据处理,但由于其兼容性、安全性和广泛应用于SSL/TLS、数字签名等,RSA仍是主流加密算法之一。
49 2
|
2月前
|
机器学习/深度学习 算法 安全
【加密算法】RSA非对称加密算法简介
【加密算法】RSA非对称加密算法简介
|
12天前
|
算法 Serverless 数据安全/隐私保护
RSA算法中,为什么需要的是两个素数?
PrimiHub是密码学专家团队开发的开源隐私计算平台,关注数据安全、密码学等领域。RSA算法使用两个素数确保安全,因为它们的乘积易于计算,但分解困难,形成加密基础。算法涉及选择大素数、计算乘积、生成公私钥对。加密时,消息通过公钥变形;解密则需私钥,安全性依赖于大数分解问题的复杂性。
|
10天前
|
算法 安全 网络安全
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
|
15天前
|
存储 算法 安全
深入解析RSA算法原理及其安全性机制
深入解析RSA算法原理及其安全性机制
|
16天前
|
存储 安全 算法
RSA非对称加密算法中的密钥对生成与传输
RSA非对称加密算法的密钥对生成与传输是信息安全领域的核心问题之一。密钥生成过程需要保证随机性和安全性,而密钥的传输则需要选择适当的方式来确保其保密性和完整性。通过合理的密钥管理和保护措施,可以有效地利用RSA算法保护通信安全,防止信息泄露和篡改。在实际应用中,用户和系统管理员需要结合具体情况选择最佳的密钥生成和传输策略,以达到最佳的安全性和效率。
|
2月前
|
安全 算法 数据库
MD5、SHA、DES、AES、RSA的算法说明
【5月更文挑战第10天】MD5、SHA、DES、AES、RSA的算法说明
43 2
|
2月前
|
算法 数据安全/隐私保护
RSA 算法的缺陷
RSA 算法的缺陷
28 0
|
2月前
|
算法 安全 网络协议
https原理--RSA密钥协商算法
https原理--RSA密钥协商算法
31 0
|
2月前
|
存储 算法 安全
加密解密(RSA)非对称加密算法
加密解密(RSA)非对称加密算法