网络子系统84_sock事件通知进程

简介:
//	socket初始化
//	调用路径:inet_create->sock_init_data
1.1 void sock_init_data(struct socket *sock, struct sock *sk)
{
	...
	//sock状态改变的回调函数,当sock的状态变迁(如从established到close_wait)就会调用这个函数
	sk->sk_state_change	=	sock_def_wakeup;
	//sock有输入数据的时被调用
	sk->sk_data_ready	=	sock_def_readable;
	//sock有可写空间时被调用
	sk->sk_write_space	=	sock_def_write_space;
	//sock出错(如收到一个rst)会被调
	sk->sk_error_report	=	sock_def_error_report;
	sk->sk_destruct		=	sock_def_destruct;
	...
}


//	唤醒sock上阻塞的进程
//	步骤:
//		1.检查struct sock->sk_wq上是否有阻塞的进程
//			1.2 唤醒struct sock->sk_wq上的进程
2.1 static void sock_def_wakeup(struct sock *sk)
{
	struct socket_wq *wq;

	rcu_read_lock();
	wq = rcu_dereference(sk->sk_wq);
	if (wq_has_sleeper(wq))
		wake_up_interruptible_all(&wq->wait);
	rcu_read_unlock();
}


//	有可用输入数据
//	调用路径:raw_local_deliver->sock_def_readable
//	步骤:
//		1.检查struct sock->sk_wq上是否有阻塞的进程
//			1.1 唤醒struct sock->sk_wq上的进程
//		2.唤醒在用户空间设置了信号io的进程
2.2 static void sock_def_readable(struct sock *sk, int len)
{
	struct socket_wq *wq;

	rcu_read_lock();
	//sock的wait_queue
	wq = rcu_dereference(sk->sk_wq);
	//唤醒在wait_queue上等待可用数据的进程
	if (wq_has_sleeper(wq))
		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
						POLLRDNORM | POLLRDBAND);
	//处理O_ASYNC
	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
	rcu_read_unlock();
}

//	有可用输出空间
//	步骤:
//		1.判断是否有足够可用内存
//			1.1 空闲内存量 >= 50%
//		2.唤醒在wait_queue上等待可用内存的进程
//		3.处理信号io
2.3 static void sock_def_write_space(struct sock *sk)
{
	struct socket_wq *wq;

	rcu_read_lock();

	//判断是否有足够内存
	//	可用内存>=50%
	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
		wq = rcu_dereference(sk->sk_wq);
		//唤醒wait_queue上的进程
		if (wq_has_sleeper(wq))
			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
						POLLWRNORM | POLLWRBAND);
		//处理信号io
		if (sock_writeable(sk))
			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
	}

	rcu_read_unlock();
}

//	sock发生错误
//		1. 检查sock上是否有进程在阻塞
//			1.1 唤醒进程有错误发生
//		2. 处理信号io
2.4 static void sock_def_error_report(struct sock *sk)
{
	struct socket_wq *wq;

	rcu_read_lock();
	wq = rcu_dereference(sk->sk_wq);
	if (wq_has_sleeper(wq))
		wake_up_interruptible_poll(&wq->wait, POLLERR);
	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
	rcu_read_unlock();
}

目录
相关文章
|
1月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
153 1
|
1月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
168 1
|
5月前
|
监控 安全 网络协议
恶意软件无处逃!国内版“Manus”AiPy开发Windows沙箱工具,进程行为+网络传输层级监控! 头像 豪气的
NImplant.exe 是一款后渗透测试工具,可实现远程管理与持久化控制。其优点包括无文件技术、加密通信和插件扩展,但也存在被检测风险及配置复杂等问题。为深入分析其行为,我们基于 aipy 开发了 Windows 沙箱工具,针对桌面上的 NImplant.exe 进行多维度分析,涵盖进程行为、网络连接(如 TCP 请求、目标 IP/域名)、文件控制等,并生成传输层监控报告与沙箱截图。结果显示,aipy 工具响应迅速,报告清晰易读,满足分析需求。
|
7月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
262 8
|
运维 供应链 安全
构建网络环境的铜墙铁壁:从微软蓝屏事件反思系统安全与稳定性
【7月更文第22天】近期,一起由软件更新引发的“微软蓝屏”事件震撼全球,凸显了现代IT基础设施在面对意外挑战时的脆弱性。此事件不仅影响了数百万台设备,还波及航空、医疗、传媒等多个关键领域,造成了难以估量的经济损失和社会影响。面对这样的挑战,如何构建更为稳固和安全的网络环境,成为了全球IT行业共同面临的紧迫任务。
208 3
|
8月前
|
存储 运维 监控
阿里云飞天洛神云网络子系统“齐天”:超大规模云网络智能运维的“定海神针”
阿里云飞天洛神云网络子系统“齐天”:超大规模云网络智能运维的“定海神针”
321 3
|
监控 安全 Linux
网络安全事件应急响应
应急响应是针对网络安全事件的快速处理流程,包括信息收集、事件判断、深入分析、清理处置、报告产出等环节。具体步骤涵盖准备、检测、抑制、根除、恢复和总结。
|
网络协议 C语言
C语言 网络编程(十三)并发的TCP服务端-以进程完成功能
这段代码实现了一个基于TCP协议的多进程并发服务端和客户端程序。服务端通过创建子进程来处理多个客户端连接,解决了粘包问题,并支持不定长数据传输。客户端则循环发送数据并接收服务端回传的信息,同样处理了粘包问题。程序通过自定义的数据长度前缀确保了数据的完整性和准确性。
|
C语言
C语言 网络编程(八)并发的UDP服务端 以进程完成功能
这段代码展示了如何使用多进程处理 UDP 客户端和服务端通信。客户端通过发送登录请求与服务端建立连接,并与服务端新建的子进程进行数据交换。服务端则负责接收请求,验证登录信息,并创建子进程处理客户端的具体请求。子进程会创建一个新的套接字与客户端通信,实现数据收发功能。此方案有效利用了多进程的优势,提高了系统的并发处理能力。

热门文章

最新文章