嵌入式Linux引导过程之1.1——Xloader的xloader.lds

简介: <div class="bct fc05 fc11 nbw-blog ztag"> <p>本文中的所有代码版本都是基于ST的SpearPlus开发板的。</p> <p>xloader是在系统上电之后,执行完ROM中的frimware后最先开始执行的用户程序,它的体积很小,执行的功能也很简单,主要是对系统时 钟以及外部SDRAM进行初始化,初始化完成之后就检查Flash中的uboot i

本文中的所有代码版本都是基于ST的SpearPlus开发板的。

xloader是在系统上电之后,执行完ROM中的frimware后最先开始执行的用户程序,它的体积很小,执行的功能也很简单,主要是对系统时 钟以及外部SDRAM进行初始化,初始化完成之后就检查Flash中的uboot image是否准备好,如果准备好了就将Flash中的uboot image根据image header中指定的load address加载到外部SDRAM中,然后就跳转到uboot执行代码。

这里,我试图从头开始,在源代码级别上来分析整个系统的引导过程。

像Xloader或者uboot之类的程序,并不像我们平常写的应用程序那样,程序的入口函数直接找main函数就行。对于这种系统程序,在最开始 看代码,尤其是要找到最开始执行的代码的位置的时候,最好的一个方法就是找到整个工程的.lds文件,也就是链接脚本文件(linker loader script)。它定义了整个工程在编译之后的链接过程,以及各个输入目标文件中的各个段在输出目标文件中的分布。详细的关于lds文件的介绍可以参考 gnu的在线文档:http://sourceware.org/binutils/docs/ld/index.html。其中的第三节Linker Script对链接脚本文件进行了介绍。

现在,我们首先开看一看xloader.lds的代码:

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(XLOADER_ENTRY)
SECTIONS
{
    . = 0x00000000;
    . = ALIGN(4);
    .text    :
    {
      ./obj/init.o    (.text)
      *(.text)
    }
 
    .rodata . :
        {
                *(.rodata)
        }
 
        . = ALIGN(4);
 
    
    .data : { *(.data) }
    . = ALIGN(4);
    .got : { *(.got) }
     
    . = ALIGN(4);
    __bss_start = .;
    .bss : { *(.bss) }
    _end = .;
}

下面,我们对这一段代码逐句进行分析。

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
在GNU的文档中,是这么定义的:
OUTPUT_FORMAT(default, big, little),在链接的时候,如果使用了-EB的命令行参数,则使用这里的big参数指定的字节序,如果使用了-EL的命令行参数,则使用这里的 little参数指定的字节序,如果没有使用任何命令行参数,则使用这里的default参数指定的字节序。
由xloader.lds中的定义可见,不管在链接的时候使用了何种命令行参数,输出的目标文件都是使用elf32-littlearm方式的字节序。

OUTPUT_ARCH(arm)
在GNU的文档中,是这么定义的:
OUTPUT_ARCH(bfdarch),也就是指定了目标的体系结构,在这里,SpearPlus内部使用的处理器核是arm926ejs的,因此体系结构也就是arm。

ENTRY(XLOADER_ENTRY)
在GNU的文档中,是这么定义的:
ENTRY(symbol)
There are several ways to set the entry point. The linker will set the entry point by trying each of the following methods in order, and stopping when one of them succeeds:
    * the `-e' entry command-line option;
    * the ENTRY(symbol) command in a linker script;
    * the value of the symbol start, if defined;
    * the address of the first byte of the `.text' section, if present;
    * The address 0.
也就是说,ENTRY(XLOADER_ENTRY)定义了整个程序的入口处,也就是在标号XLOADER_ENTRY处。整个程序将从这里开始运行。

接下来的部分,是对整个输出目标文件中各个段的存储位置的定义。
在GNU的文档中,是这么定义的:
SECTIONS
     {
       sections-command
       sections-command
       ...
     }
对于其中的每一个sections-command,其完整的定义如下:
The full description of an output section looks like this:

     section [address] [(type)] :
       [AT(lma)] [ALIGN(section_align)] [SUBALIGN(subsection_align)]
       {
         output-section-command
         output-section-command
         ...
       } [>region] [AT>lma_region] [:phdr :phdr ...] [=fillexp]

Most output sections do not use most of the optional section attributes.
The whitespace around section is required, so that the section name is unambiguous. The colon and the curly braces are also required. The line breaks and other white space are optional.
下面来看看xloader.lds中SECTIONS的定义:
SECTIONS
{
    /* location counter设置为0x00000000,其实由于在Makefile中的
     * 链接选项中使用了-Ttext $(TEXT_BASE),而TEXT_BASE=0xD2800B00
     * 因此,此处的设置其实是没有作用的,代码运行的时候将运行在TEXT_BASE地址
     */
    . = 0x00000000;
    . = ALIGN(4);    /* 四字节对齐 */
    /* 将所有输入目标文件中的.text段即代码段放在此处,并且,输出目标文件中的.text段中的
     * 开头部分存放init.o的.text段。也就是运行的第一条代码,也就是XLOADER_ENTRY
     * 标号对应的代码就在init.o当中
     */
    .text    :
    {
      ./obj/init.o    (.text)
      *(.text)
    }
 
    /* 紧接着.text段,存放所有输入目标文件中的.rodata段,也就是
     * 只读数据段。此处注意.rodata后跟着的.,这个.表示当前location counter,
     * 对应于上述完整描述sections中的[address]
     * 此处表示.rodata段紧接着.text段存放,而不用任何对齐
     */
    .rodata . :
        {
                *(.rodata)
        }
 
        . = ALIGN(4);    /* 四字节对齐 */
 
    
    /* 将所有输入目标文件中的.data读写数据段存储在此处
     * 所有全局手动初始化的变量存储在该段中,并且在输出目标文件中已经分配了存储空间
     */
    .data : { *(.data) }
    . = ALIGN(4);    /* 四字节对齐 */
    /* .got段是GLOBAL OFFSET TABLE,具体的作用还没有搞清楚 */
    .got : { *(.got) }
     
    . = ALIGN(4);    /* 四字节对齐 */
    /* .bss段的开始,所有全局未初始化变量的大小等信息存储在该段中
     * 但是在输出的目标文件中并不为这些变量分配存储空间,
     * 而是交给操作系统在初始化的时候分配内存,然后紧跟在.data段后面并初始化为零
     * 另外,此处还定义了两个标号分别表示.bss的开始和结束(也是整个目标文件的结束)
     */
    __bss_start = .;
    .bss : { *(.bss) }
    _end = .;
}

从这里,我们能够得到的最关键的信息是:整个程序的入口在标号XLOADER_ENTRY处,并且该标号定义在init.o目标文件中,因为整个最终的链接之后的目标文件中,位于最开头的就是init.o目标文件。
于是,我们可以根据这个线索来继续追踪整个的引导过程了。


参考文章:
对.lds连接脚本文件的分析
http://blog.csdn.net/tony821224/archive/2008/01/18/2051755.aspx
Documentation for binutils 2.18--ld
http://sourceware.org/binutils/docs/ld/index.html
.bss段和.data段的区别
http://www.w3china.org/blog/more.asp?name=FoxWolf&id=29997
什么是bss段
http://blog.csdn.net/bobocheng1231/archive/2008/02/23/2115289.aspx

相关文章
|
5天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
33 15
|
19天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
85 13
|
7月前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
208 1
|
4月前
|
网络协议 Ubuntu Linux
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
|
5月前
|
NoSQL Linux C语言
嵌入式GDB调试Linux C程序或交叉编译(开发板)
【8月更文挑战第24天】本文档介绍了如何在嵌入式环境下使用GDB调试Linux C程序及进行交叉编译。调试步骤包括:编译程序时加入`-g`选项以生成调试信息;启动GDB并加载程序;设置断点;运行程序至断点;单步执行代码;查看变量值;继续执行或退出GDB。对于交叉编译,需安装对应架构的交叉编译工具链,配置编译环境,使用工具链编译程序,并将程序传输到开发板进行调试。过程中可能遇到工具链不匹配等问题,需针对性解决。
178 3
|
5月前
|
Linux Windows
【Linux】grub命令行引导进入windows系统
【8月更文挑战第20天】在Linux中通过GRUB命令行引导Windows的方法包括:1) 进入GRUB命令行模式,启动时按`c`键;2) 使用`ls`查找含Windows引导文件的分区,如`bootmgr`或`ntldr`;3) 设置根设备`root=(hd0,msdos3)`与链加载器`chainloader +1`;4) 输入`boot`命令启动Windows。请注意实际步骤可能因系统配置而异。
584 2
|
5月前
|
传感器 人工智能 网络协议
:嵌入式 Linux 及其用途
【8月更文挑战第24天】
226 0
|
6月前
|
Ubuntu 算法 Linux
嵌入式Linux的学习误区
**嵌入式Linux学习误区摘要** 1. **过度聚焦桌面Linux** - 许多学习者误将大量时间用于精通桌面Linux系统(如RedHat、Fedora、Ubuntu),认为这是嵌入式Linux开发的基石。 - 实际上,桌面Linux仅作为开发工具和环境,目标不应是成为Linux服务器专家,而应专注于嵌入式开发工具和流程。 2. **盲目阅读Linux内核源码** - 初学者在不了解Linux基本知识时试图直接研读内核源码,这往往导致困惑和挫败感。 - 在具备一定嵌入式Linux开发经验后再有针对性地阅读源码,才能有效提升技能。