LVS简介及其调度算法说明

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介:

LVS简介及其调度算法说明



    虚拟服务器(LVS)的体系结构如图所示,一组服务器通过高速的局域网或者地理分布的广域网相互连接,在它们的前端有一个负载调度器(Load Balancer)。负载调度器能无缝地将网络请求调度到真实服务器上,从而使得服务器集群的结构对客户是透明的,客户访问集群系统提供的网络服务就像访问一台高性能、高可用的服务器一样。客户程序不受服务器集群的影响不需作任何修改。系统的伸缩性通过在服务机群中透明地加入和删除一个节点来达到,通过检测节点或服务进程故障和正确地重置系统达到高可用性。由于我们的负载调度技术是在Linux内核中实现的,我们称之为Linux虚拟服务器(Linux Virtual Server


wKiom1YJC9SAi9jYAADQBZiOqYE656.jpg







 

在调度器的实现技术中,IP负载均衡技术是效率最高的。在已有的IP负载均衡技术中有通过网络地址转换(Network AddressTranslation)将一组服务器构成一个高性能的、高可用的虚拟服务器,我们称之为VS/NAT技术(Virtual Server via Network Address Translation),大多数商品化的IP负载均衡调度器产品都是使用此方法,如Cisco的LocalDirector、F5的Big/IP和 Alteon的ACEDirector。在分析VS/NAT的缺点和网络服务的非对称性的基础上,我们提出通过IP隧道实现虚拟服务器的方法VS/TUN (Virtual Server via IP Tunneling),和通过直接路由实现虚拟服务器的方法VS/DR(Virtual Server via Direct Routing),它们可以极大地提高系统的伸缩性。所以,IPVS软件实现了这三种IP负载均衡技术,它们的大致原理如下(我们将在其他章节对其工作原理进行详细描述),

 

Virtual Server via Network Address Translation(VS/NAT)

通过网络地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器;真实服务器的响应报文通过调度器时,报文的源地址被重写,再返回给客户,完成整个负载调度过程。

wKiom1YJDIHDweU-AADy0-CQsaw969.jpg

Virtual Server via IP Tunneling(VS/TUN)

采用NAT技术时,由于请求和响应报文都必须经过调度器地址重写,当客户请求越来越多时,调度器的处理能力将成为瓶颈。为了解决这个问题,调度器把请求报文通过IP隧道转发至真实服务器,而真实服务器将响应直接返回给客户,所以调度器只处理请求报文。由于一般网络服务应答比请求报文大许多,采用 VS/TUN技术后,集群系统的最大吞吐量可以提高10倍。

 

Virtual Server via Direct Routing(VS/DR)

VS/DR通过改写请求报文的MAC地址,将请求发送到真实服务器,而真实服务器将响应直接返回给客户。同VS/TUN技术一样,VS/DR技术可极大地提高集群系统的伸缩性。这种方法没有IP隧道的开销,对集群中的真实服务器也没有必须支持IP隧道协议的要求,但是要求调度器与真实服务器都有一块网卡连在同一物理网段上。


wKiom1YJDJjz2vPHAAFzdjCjBso273.jpg

针对不同的网络服务需求和服务器配置,IPVS调度器实现了如下八种负载调度算法:

 

轮叫(Round Robin)

调度器通过"轮叫"调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。

 

加权轮叫(Weighted Round Robin)

调度器通过"加权轮叫"调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

 

最少链接(Least Connections)

调度器通过"最少连接"调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用"最小连接"调度算法可以较好地均衡负载。

 

加权最少链接(Weighted Least Connections)

在集群系统中的服务器性能差异较大的情况下,调度器采用"加权最少链接"调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

 

基于局部性的最少链接(Locality-Based Least Connections)

"基于局部性的最少链接" 调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用"最少链接"的原则选出一个可用的服务器,将请求发送到该服务器。

 

带复制的基于局部性最少链接(Locality-Based Least Connections withReplication)

"带复制的基于局部性最少链接"调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务器组,按"最小连接"原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器,若服务器超载;则按"最小连接"原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

 

目标地址散列(Destination Hashing)

"目标地址散列"调度算法根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

 

源地址散列(Source Hashing)

"源地址散列"调度算法根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。



本文转自pizibaidu 51CTO博客,原文链接:http://blog.51cto.com/pizibaidu/1698894,如需转载请自行联系原作者
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
3月前
|
机器学习/深度学习 算法 调度
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)
基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)
148 3
|
3月前
|
机器学习/深度学习 运维 算法
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
247 0
基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
|
3月前
|
机器学习/深度学习 边缘计算 监控
【创新】【微电网多目标优化调度】五种多目标优化算法(MOJS、NSGA3、MOGWO、NSWOA、MOPSO)求解微电网多目标优化调度(Matlab代码实现)
【创新】【微电网多目标优化调度】五种多目标优化算法(MOJS、NSGA3、MOGWO、NSWOA、MOPSO)求解微电网多目标优化调度(Matlab代码实现)
233 0
|
3月前
|
机器学习/深度学习 算法 安全
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)
108 0
|
3月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
208 1
|
3月前
|
运维 算法 搜索推荐
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
180 1
|
3月前
|
机器学习/深度学习 边缘计算 分布式计算
基于差分进化算法的微电网调度研究(Matlab代码实现)
基于差分进化算法的微电网调度研究(Matlab代码实现)
136 1
|
3月前
|
机器学习/深度学习 存储 算法
【微电网优化调度】五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度比较研究【创新未发表】(Matlab代码实现)
【微电网优化调度】五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度比较研究【创新未发表】(Matlab代码实现)
146 8
|
3月前
|
机器学习/深度学习 存储 算法
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究(Matlab代码实现)
151 0
|
3月前
|
存储 机器学习/深度学习 运维
基于改进灰狼算法的并网交流微电网经济优化调度研究(Matlab代码实现)
基于改进灰狼算法的并网交流微电网经济优化调度研究(Matlab代码实现)

热门文章

最新文章