Android AdapterView 源码分析以及其相关回收机制的分析

简介:

前言

忽然,发现,网上的公开资料都是教你怎么继承一个baseadapter,然后重写那几个方法,再调用相关view的 setAdpater()方法, 接着,你的item 就显示在手机屏幕上了。很少有人关注android adpater模式机制的实现原理,比较深入的也不过是说说adapter getview()中的回收情况。今天把相关的源码看了一遍,把自己的理解记录下来。

AdpaterView 概览

AdpaterView

api手册的说明:An AdapterView is a view whose children are determined by an Adapter.

实际上android里面ListView, GridView, Spinner , Gallery等view都是基于设计模式上的设配器模式实现的,只要熟悉设配器模式的相关知识,就知道如何从源码里面找到相关的实现线索。

认识AdapterView

源码链接https://github.com/android/platformframeworksbase/blob/master/core/java/android/widget/AdapterView.java

要理解listview等的实现,其父类是不得不看。源码有1200多行。阅读完AdapterView,能搞明白以下问题

  1. 响应数据的更改。

    (793 - 842)

  2. 知道点击view的时候,获得对应的位置.

    (593 - 615)

响应数据的更改

这里假设你已经打开了AdpaterView 的 793 到 842 行。。

在我刚开始用adapterview 的时候,最让我费劲的就是,为什么我调用adpater 的 notifyDataSetChanged() 就能更新view 的状态了呢,然后跟调用notifyDataSetInvalidated() 两者之间又有什么区别呢?以前,找了一下资料,没找到很详细的说明,现在从源码里面找答案的话,就很清晰了。

首先,我们要明白一种设计模式:观察者设计模式

我相信你,应该能明白观察者模式是个什么样的实现了。。。

AdapterView 之所以能对Adapter 的数据更新进行响应,就是因为其在Adapter上注册了一个数据观察者(AdapterDataSetObserver(793 - 842 ))的内部类,所以,我们只要对adpater 状态的改变发送一个通知,就能让AdapterView调用相应的方法了。

DataSetObservable 的源码,记得要把其父类也看了。 https://github.com/android/platformframeworksbase/blob/master/core/java/android/database/DataSetObservable.java

现在我们就能解决我们一开始的疑问notifyDataSetChanged() 与notifyDataSetInvalidated() 具体回到AdapterView 产生什么影响?

我们对比一下onChange() 与 onInvalidated() 方法,就能对比得出,前者会对当前位置的状态进行同步,而后者会重置所有位置的状态。从代码的注释里面还可以获取得到更多的信息。

这样,我们以后调用notifyDataSetChanged()和notifyDataSetInvalidated() 就更加明白会发生什么情况了。

点击item 怎么能够获取到当前的位置

这里假设你已经打开了AdpaterView 的 593 - 615 行。。

对于getPositionForView() 这个方法,你肯定没用过,要搞明白为什么我们能够获取到adapterView 里面item view对应的位置,我们需要看其直接子类:AbsListView.class

源码相关:(2130-2197) (2196 - 2279)

这里又用到一种设计模式:委托模式

假设你已经搞懂委托模式的概念,首先我们来看源码(2130 - 2197)。

obtainView() 方法名中我们可以知道,这是一个用于生成itemView的方法。把这块代码看完,以后,会不会有个疑问呢(先不用管回收那块)? position 到哪里了?我们可以看到这个方法实际上并没有对我们的itemview 设置了任何的监听器,那为什么最后能对我们的itemview的动作进行反应呢?

接下来我们看:源码(2196 - 2279)

从代码里面我们可以看出这是一个委托类,对item 的动作进行初始化,以及响应对应的操作,从源码里面我们可以获知得到,一个item view 为什么能对click,longclick,select 动作进行响应,然后,通过调用performItemClick() 最终把事件调用到AdapterView(292-303)的performItemClick() 里面的监听器方法.

如果,你对委托模式不熟的话,要明白这里的话,需要花点时间。

认识 AbsListView 回收机制

源码: AbsListView.class

长期以来,都有这么一个说法,listview 会自动把不可见的view进行回收,但是长期以来,我都没看到有人对其回收机制进行分析说明

回收执行者:RecycleBin

我们回到之前看过的AbsListView.class

obtainView()(2130-2197)

你会看到一个

mRecycler 的变量。

接下来,通过搜索我们可以得知这个变量是在(308)进行初始化,这是一个内部类的

RecycleBin的实例(6139 - 6507)

看到这类,我们大致可以知道,这个类是这个absListView 回收机制的实现者。

请 跳转到(6139)

现在,我们来看一下这个类的注释,大体的意思这个类是用来帮助复用view的,用2个不同级别的方式进行存储(The RecycleBin has two levels of storage)(个人感觉描述得挺变扭的,还是看原文好了。。)

  1. ActiveViews : 一开始显示在屏幕的view

  2. ScrapViews: 潜在的一些可以让adpater 使用的old views。

然后,注释里面已经说了,ActiveViews 怎么变成 ScrapViews。就注释提供的信息这里我们有两个疑问。

  1. 什么时候产生 ActiveViews。

  2. 什么时候产生 ScrapViews。

这要把这两点搞清楚了,整个回收体系也就清楚了。

AbsListView的回收机制具体实现

从RecycleBin类的注释里面我们获知,回收机制的第一步就是屏幕的view 放在ActiveViews,然后通过对ActiveViews进行降级变成ScrapViews,然后通过scrapViews 进行view 的复用

通过,一番的检索,我们在Listview.class(1562行里面找到fillActiveViews()的调用)。

我们观察一下Listview.class(1460 - 1713) 看一下layoutChildren()这个方法是干嘛用的。

当我们看到(1550)行的时候,就会发现了这个回收类的赋值。接下来我们看下listview是如何利用回收机制:

  1. 当数据发生改变的时候,把当前的view放到scrapviews里面,否则标记为activeViews(1557 - 1562)

  2. recycleBin.removeSkippedScrap(); 移除所有old views

  3. recycleBin.scrapActiveViews(); 刷新缓存,将当前的ActiveVies 移动到 ScrapViews。

这里干了些事情呢?我们回到(1557 - 1562) 我们可以看到一个变量dataChanged,从单词的意思我们就可以,这里的优化规则就是基于数据是否有变化,我们通过搜索成员变量mDataChanged在 (1693) 的时候变成了false 接着我们在makeAndAddView(1751 - 1775)发现了这个变量的使用。

阅读(1756 - 1766) 我们可以看到回收机制的第一次使用,如果数据没有发生改变,通过判断ActiveViews(这些些view来自(1557 - 1562)) 列表里面有没有当前 活动view,有的话直接复用已经存在的view。这样的好处就是直接复用当前已经存在的view,不需要通过adapter.getview()里面获取子view。

好了,接下来我们来看下makeAndAddView(1751 - 1775) 是如何通过adapter.getview()中 获取到view。我们回到AbsListView.class(2130 - 2194)

在 (2134) 中我们看到一个很神秘的方法scrapView = mRecycler.getTransientStateView(position); 从单词的意思里面我们可以得知这是获取一个瞬间状态的view,这里就有个疑问什么是瞬间状态的view?通过对源码的层层分析终于在View 类的 hasTransientState()方法里面找到描述。从描述中我们得知这个方法是用来标记这个view的瞬时状态,用来告诉app无需关心其保存和恢复。从注释中,官方告诉我这种具有瞬时状态的view,用于在view动画播放等情况中。

那么,我们就可以明白这句话优化的是absListView 的列表动画.

接着阅读到一下代码的时候,我就困惑了

scrapView = mRecycler.getScrapView(position);

从这行代码里面我们可知,复用的review是跟位置有关的,我们回去在看看(ListView 1557-1563)

       if (dataChanged) {            for (int i = 0; i < childCount; i++) {                recycleBin.addScrapView(getChildAt(i), firstPosition+i);            }        } else {            recycleBin.fillActiveViews(childCount, firstPosition);        }

我们可以发现,实际上这里放进回收类里面的只有当前的显示的view,并没有产生当前屏幕没有的view,但是,实际使用中,当我们进行滚屏的时候,显示下个view的时候,就已经能发现getView 第二个参数已经不为null了,那实际实现在哪里了,我们通过搜索用到RecycleBin 的方法,找到

layoutChildren()

scrollListItemsBy()

onMeasure()

measureHeightOfChildren()

通过查看

scrollListItemsBy()

我们就能够明白,当我们进行滚屏的时候,在listview 移除item view 的时候,把移除的item view放进了

recycleBin.addScrapView(last, mFirstPosition+lastIndex);

于是生成下一个view的时候就能够复用之前的view了,搞清楚这个机制以后我们回到

AbsListView.class(2139 - 2168)

接下来代码, 解答了我们一个经典的adapter 优化方法的由来

  View child;    if (scrapView != null) {        child = mAdapter.getView(position, scrapView, this);
        if (child.getImportantForAccessibility() == IMPORTANT_FOR_ACCESSIBILITY_AUTO) {            child.setImportantForAccessibility(IMPORTANT_FOR_ACCESSIBILITY_YES);        }        if (child != scrapView) {            mRecycler.addScrapView(scrapView, position);            if (mCacheColorHint != 0) {                child.setDrawingCacheBackgroundColor(mCacheColorHint);            }        } else {            isScrap[0] = true;            child.dispatchFinishTemporaryDetach();        }    } else {        child = mAdapter.getView(position, null, this);        if (child.getImportantForAccessibility() == IMPORTANT_FOR_ACCESSIBILITY_AUTO) {            child.setImportantForAccessibility(IMPORTANT_FOR_ACCESSIBILITY_YES);        }        if (mCacheColorHint != 0) {            child.setDrawingCacheBackgroundColor(mCacheColorHint);        }    }

实际上所谓的优化,就是通过利用已有产生的View进行复用,减少在Adapter.getView()进行类的实例化操作优化性能。

从某年google io的文档中我们得知这个回收机制的效率能够提供listview 300%的效率。

接着我们还明白了

getView(int position, View convertView, ViewGroup parent) 这个三个参数的由来了。

通过,对回收机制的分析,我们可以查看

listview scrollListItemsBy()

的时候应该注意到,实际上不可见的 item 是会被自动移除,那样为什么当滚动过多的item的时候会发生oom的情况了?

在我们阅读完整个回收机制的时候,我们会发现回收机制实际上是通过在内存里面缓存view对象,让listview能够快速的获取view使listview的显示流畅。而导致OOM的问题也出在这里,由于整个回收机制把所有的imageview中的bitmap对象也保存下来,在进行不断的滑屏操作中,RecycleBin 类越来越大,最终导致OOM 的发生。

当然,根据整个思路,要避免OOM实际上也很简单,我们只需要在虚拟机中开辟一个内存块,专门用于保存bitmap对象的 map对象(一般而言用LRU算法实现),所有的imageview的应用都通过整个map 对象进行引用,当这个map对象大于一定程度的时候释放部分bitmap,这就可以保证RecycleBin在保存这些imageview的时候,而这些imageview里面的bitmap对象时通过一个固定的内存块里面获取,只要我们开辟的用于引用的bitmap 的内存块的大小合理,那样就永远也不会发生oom了。

至于其他继承自AbsListView 的View 其回收机制都一样。。

感想

花了,几个小时,把AdapterView 相关源码看完,大致计算了行数有3w 来行代码了,当然,不会是一行不漏的看过去。 这里分享一个看源码的方法。首先,有接口和,抽象类的地方,一定要把所有方法看全,这一块基本上是属于要一行不漏的看完。实际上这些接口,和抽象类是我们看源码重要的索引,那些4,5k行的代码,实际上,里面的关键,都是这些接口,和相应的抽象类的扩展。


本文转自 liam2199 博客,原文链接: http://blog.51cto.com/youxilua/1197715  如需转载请自行联系原作者


相关文章
|
11天前
|
算法 Linux 调度
深入探索安卓系统的多任务处理机制
【10月更文挑战第21天】 本文旨在为读者提供一个关于Android系统多任务处理机制的全面解析。我们将从Android操作系统的核心架构出发,探讨其如何管理多个应用程序的同时运行,包括进程调度、内存管理和电量优化等方面。通过深入分析,本文揭示了Android在处理多任务时所面临的挑战以及它如何通过创新的解决方案来提高用户体验和设备性能。
23 1
|
16天前
|
存储 安全 Android开发
探索Android与iOS的隐私保护机制
在数字化时代,移动设备已成为我们生活的一部分,而隐私安全是用户最为关注的问题之一。本文将深入探讨Android和iOS两大主流操作系统在隐私保护方面的策略和实现方式,分析它们各自的优势和不足,以及如何更好地保护用户的隐私。
|
25天前
|
安全 Android开发 数据安全/隐私保护
深入探讨iOS与Android系统安全性对比分析
在移动操作系统领域,iOS和Android无疑是两大巨头。本文从技术角度出发,对这两个系统的架构、安全机制以及用户隐私保护等方面进行了详细的比较分析。通过深入探讨,我们旨在揭示两个系统在安全性方面的差异,并为用户提供一些实用的安全建议。
|
2月前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
60 15
Android 系统缓存扫描与清理方法分析
|
2月前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
|
2月前
|
消息中间件 存储 Java
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
Android面试高频知识点(2) 详解Android消息处理机制(Handler)
54 1
|
2月前
|
存储 安全 数据安全/隐私保护
探索安卓与iOS的隐私保护机制####
【10月更文挑战第15天】 本文深入剖析了安卓和iOS两大操作系统在隐私保护方面的策略与技术实现,旨在揭示两者如何通过不同的技术手段来保障用户数据的安全与隐私。文章将逐一探讨各自的隐私控制功能、加密措施以及用户权限管理,为读者提供一个全面而深入的理解。 ####
63 1
|
2月前
|
消息中间件 存储 Java
Android消息处理机制(Handler+Looper+Message+MessageQueue)
Android消息处理机制(Handler+Looper+Message+MessageQueue)
49 2
|
2月前
|
存储 Linux Android开发
Android底层:通熟易懂分析binder:1.binder准备工作
本文详细介绍了Android Binder机制的准备工作,包括打开Binder驱动、内存映射(mmap)、启动Binder主线程等内容。通过分析系统调用和进程与驱动层的通信,解释了Binder如何实现进程间通信。文章还探讨了Binder主线程的启动流程及其在进程通信中的作用,最后总结了Binder准备工作的调用时机和重要性。
Android底层:通熟易懂分析binder:1.binder准备工作
|
2月前
|
开发工具 Android开发 Swift
安卓与iOS开发环境的差异性分析
【10月更文挑战第8天】 本文旨在探讨Android和iOS两大移动操作系统在开发环境上的不同,包括开发语言、工具、平台特性等方面。通过对这些差异性的分析,帮助开发者更好地理解两大平台,以便在项目开发中做出更合适的技术选择。